The Unemployment-Inflation Trade-off Revisited: The Phillips Curve in COVID Times

Discussion Jonathon Hazell (London School of Economics)

JME-SNB-Gerzensee Conference October 15, 2022

Setting the Scene: Inflation is High

Setting the Scene: Search Frictions are High

Vacancy and unemployment rates, December 2000 to April 2022

Source: Blanchard, Domash & Summers (2022)

Setting the Scene: Search Frictions are High

Chairman Powell (Sep 22, 2022):

"Job openings could come down significantly—and they need to—without as much of an increase in unemployment as has happened in earlier historical episodes."

Blanchard, Domash & Summers (2022):

"The Federal Reserve seeks to cool an overheated US labor market to ease wage hikes and reduce job vacancies, without a painful spike in unemployment. But empirical evidence indicates that these goals have never been accomplished together and remain unlikely now."

CEGS ask:

What are the structural shocks determining inflation and unemployment dynamics after the pandemic?

This Paper

CEGS ask:

What are the structural shocks determining inflation and unemployment dynamics after the pandemic?

(And what is the role of search frictions?)

Outline of the Discussion

- Summarize the paper:
 - Rise in inflation due to increase in natural rate of unemployment
- Main comment #1: great to see inflation modelling with search frictions
- Main comment #2: what explains the data?
 CEGS explanation vs. temporarily steep Phillips Curve

Approach

Standard: estimate a New Keynesian wage Phillips Curve

My abridged version

$$\pi_t^{w} = \pi_t^{\mathsf{long run expected}} - \kappa \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j \left(u_{t+j} - u_{t+j}^*
ight)$$

 Methodological innovation: discipline unemployment using flow micro data cf. Crump et al (BPEA 2019) Approach

Standard: estimate a New Keynesian wage Phillips Curve

My abridged version

$$\pi^{w}_{t} = \pi^{\mathsf{long run expected}}_{t} - \kappa \mathbb{E}_{t} \sum_{j=0}^{\infty} eta^{j} \left(u_{t+j} - u^{*}_{t+j}
ight)$$

 Methodological innovation: discipline unemployment using flow micro data cf. Crump et al (BPEA 2019)

Approach

Standard: estimate a New Keynesian wage Phillips Curve

My abridged version

$$\pi_t^{\mathsf{w}} = \pi_t^{\mathsf{long run expected}} - \kappa \mathbb{E}_t \sum_{j=0}^\infty eta^j \left(u_{t+j} - u_{t+j}^*
ight)$$

 Methodological innovation: discipline unemployment using flow micro data cf. Crump et al (BPEA 2019)

Estimation

- Blue = w/o wages
- Grey = with wages

Main Result:

- High inflation is due to large increase in natural rate of unemployment
- Which model infers from high wage growth

Under the Hood—Intuition for the Results

New Keynesian Phillips Curve

$$\pi_t^{\mathsf{w}} = \pi_t^{\mathsf{long run expected}} - \kappa \mathbb{E}_t \sum_{j=0}^{\infty} \beta^j \left(u_{t+j} - u_{t+j}^*
ight)$$

Data:

- 1. Weak wage inflation-unemployment correlation pre-pandemic
- 2. Steep wage inflation-unemployment post-pandemic
- 3. $\pi_t^{\text{long run expected}}$ relatively stable (for now)
- CEGS explanation:
 - Low value of κ explains (1)
 - Large rise in u_{t+j}^* explains (2)

My Comments

Excellent paper: important question, careful macro and micro data work, creative use of Burning Glass wage data to validate predictions

My Comments

- Excellent paper: important question, careful macro and micro data work, creative use of Burning Glass wage data to validate predictions
- Main comment #1: This is a great modelling framework
 - In general: great to discipline macro models with micro data + search
 - Timely given current search frictions
 - Aside—could take "search block" even further:
 - Explicitly model search frictions
 - How does the model interpret the shifting Beveridge Curve?
 - Blanchard, Domash & Summers vs. Powell & Waller ...

My Comments

- Excellent paper: important question, careful macro and micro data work, creative use of Burning Glass wage data to validate predictions
- Main comment #1: This is a great modelling framework
 - In general: great to discipline macro models with micro data + search
 - Timely given current search frictions
 - Aside—could take "search block" even further:
 - Explicitly model search frictions
 - How does the model interpret the shifting Beveridge Curve?
 - Blanchard, Domash & Summers vs. Powell & Waller ...
- Main comment #2: what about a temporarily steeper Phillips Curve?

Explanations: CEGS vs. temporarily steeper Phillips Curve

New Keynesian Phillips Curve

$$\pi^{w}_{t} = \pi^{ ext{long run expected}}_{t} - \kappa \mathbb{E}_{t} \sum_{j=0}^{\infty} eta^{j} \left(u_{t+j} - u^{*}_{t+j}
ight)$$

Data:

- 1. Weak wage inflation-unemployment correlation pre-pandemic
- 2. Steep wage inflation-unemployment post-pandemic
- 3. $\pi_t^{\text{long run expected}}$ relatively stable (for now)
- CEGS explanation:
 - Low value of κ explains (1)
 - Large rise in u_{t+j}^* explains (2)

Explanations: CEGS vs. temporarily steeper Phillips Curve

New Keynesian Phillips Curve

$$\pi^{w}_{t} = \pi^{ ext{long run expected}}_{t} - \kappa \mathbb{E}_{t} \sum_{j=0}^{\infty} eta^{j} \left(u_{t+j} - u^{*}_{t+j}
ight)$$

Data:

- 1. Weak wage inflation-unemployment correlation pre-pandemic
- 2. Steep wage inflation-unemployment post-pandemic
- 3. $\pi_t^{\text{long run expected}}$ relatively stable (for now)
- CEGS explanation:
 - Low value of κ explains (1)
 - Large rise in u_{t+j}^* explains (2)

Alternative explanation:

- Low κ before pandemic, high κ after (explains 1 + 2)
- \rightarrow Smaller changes in u_{t+j}^*

Reason for Temporary Steepness: Downward Wage Rigidity

- Suppose that wages are rigid downward but flexible upwards
- Then the correlation between inflation and unemployment is higher:
 - In a tight labor market
 - After a sequence of positive shocks

Wages: Rigid Downward, but Flexible Upward

Quarterly State Unemployment Change

Source: Hazell & Taska (2022) and Burning Glass data

Temporary Steepness vs. Rising Natural Rate

- **Future:** CEGS model rule out a temporarily steeper Phillips Curve?
 - E.g. estimate time varying κ , or use region/industry data?
 - Hazell, Herreno, Nakamura & Steinsson (QJE 2022) find intermediate time variation in κ w/ state data
- Why does alternative explanation versus CEGS matter?
 - Sacrifice ratio
 - Forecasting
 - Optimal policy

Conclusion

- Great paper and modelling framework, especially now
- Comments:
 - 1. More exciting work to be done with search
 - 2. Another possibility to consider: temporarily steeper Phillips Curve