Anatomy of the Phillips Curve: Micro Evidence and Macro Implications

Discussion Jonathon Hazell (London School of Economics)

Inflation: Drivers and Dynamics Conference 2023 August 30, 2023

Phillips Curve

New Keynesian formalization

$$\pi_t = \beta E_t \pi_{t+1} + \kappa (y_t - y_t^n) + v_t$$

Drivers of inflation

- Inflation expectations $E_t \pi_{t+1}$
- Output / unemployment gap $u_t u_t^n$
- Supply shocks v_t

Objects of interest:

- "Slope" coefficient κ —how much does fall in unemployment increase inflation?
- "Expectations" coefficient β —how forward looking is inflation?

What Did We Know Before GGLT?

1. Slope coefficient κ

- Growing consensus pre pandemic that κ is low (Stock & Watson 2018; Hazell, Herreno, Nakamura & Steinsson 2022)
- Perhaps not after pandemic (Benigno & Eggertsson 2023)

What Did We Know Before GGLT?

1. Slope coefficient κ

 Growing consensus pre pandemic that κ is low (Stock & Watson 2018; Hazell, Herreno, Nakamura & Steinsson 2022)

- Perhaps not after pandemic (Benigno & Eggertsson 2023)
- 2. Expectations coefficient β —no consensus

"Identification of the NKPC is too weak ... we think it will be more fruitful to explore fundamentally new sources of identification, such as **micro/sectoral data**"

— Mavroeidis, Plagborg-Moeller & Stock (2014)

- Main issue is weak instruments in time series
- "Holy grail" of Phillips Curve estimation going back to Phelps & Friedman ...

GGLT ask:

What can we learn about the aggregate Phillips Curve from microdata?

GGLT ask:

What can we learn about the aggregate Phillips Curve from microdata?

Answer: a tremendous amount!

Outline of the Discussion

Summarize the paper

Main comments

- 1. Powerful framework for estimating β
- 2. How to think about identification with persistent firm level demand shocks?
- 3. Price stickiness vs. inflation inertia

Approach—Theory

GGLT show in a Calvo model w/ strategic complementarity in price setting

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

- $p_{ft} = \text{firm price}$
- $1 \theta =$ frequency of price change
- β = discount factor
- $\Omega = \text{strategic complementarity}$
- mc_{ft} = firm level marginal cost
- $p_{it+\tau}^{-f}$ = competitor price index
- ε_{ft} = other factors affecting firm prices—idiosyncratic demand shocks

Approach—Theory

GGLT show in a Calvo model w/ strategic complementarity in price setting

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) m c_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

Implies aggregate Phillips Curve

$$\pi_t = eta E_t \pi_{t+1} + \lambda \left(m c_t - m c_t^n
ight) \quad \lambda \equiv (1 - eta) \left(1 - eta \Theta
ight) \left(1 - \Omega
ight) / heta$$

Approach—Theory

GGLT show in a Calvo model w/ strategic complementarity in price setting

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) m c_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

Implies aggregate Phillips Curve

$$\pi_t = eta E_t \pi_{t+1} + \lambda \left(mc_t - mc_t^n
ight) \quad \lambda \equiv (1 - oldsymbol{ heta}) \left(1 - oldsymbol{eta} oldsymbol{ heta}
ight) \left(1 - \Omega
ight) / oldsymbol{ heta}$$

- \rightarrow Estimate Phillips Curve parameters using microdata!
 - General result: mapping holds w/ oligopoly, menu costs, decreasing returns etc
 - Marginal cost is "sufficient statistic" for many factors (wage rigidity, energy etc)

Approach—Measurement

Estimate main equation by GMM

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

Comprehensive Belgian manufacturing data

Approach—Measurement

Estimate main equation by GMM

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

Comprehensive Belgian manufacturing data

Calibrate β , estimate θ and Ω

Approach—Measurement

Estimate main equation by GMM

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

Comprehensive Belgian manufacturing data

- **Calibrate** β , estimate θ and Ω
- Instrument for mc_{ft} and $p_{i,t+\tau}$ with lags, add industry-time FEs
 - Identification assumption: lagged mc orthogonal to ε_{ft}

Main Results

$$\pi_t = \beta E_t \pi_{t+1} + \lambda \left(mc_t - mc_t^n \right)$$

Main Results

$$egin{split} \pi_t &= eta \, E_t \pi_{t+1} + \lambda \left(m c_t - m c_t^n
ight) \ &pprox eta \, E_t \pi_{t+1} + \kappa (y_t - y_t^n) \end{split}$$

- λ is high!
- But additional evidence that κ is low

$$\kappa \approx \lambda \varphi \quad (mc_t - mc_t^n) \approx \varphi (y_t - y_t^n)$$

Implications

- 1. Discipline future models
 - Flat Phillips curve mostly not due to nominal price rigidity
 - Due to "real rigidity" or nominal wage rigidity
- 2. Propagation of supply vs. demand shocks
 - Supply shocks (e.g. oil) affect mc_t directly, big effects on π_t due to high λ
 - "Demand shocks" have smaller effects on π_t , due to low ϕ

My Comments

This is a great paper: important question + results, general + tractable model, painstaking empirical work \rightarrow likely to be highly influential

My Comments

This is a great paper: important question + results, general + tractable model, painstaking empirical work \rightarrow likely to be highly influential

Main Comment #1: this is a great framework to estimate β !

- Powerful micro variation to overcome "weak instruments" in time series
- Recall main estimating equation calibrates $\beta = 0.99$

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

Future work: estimate β , potentially calibrate θ from prob. of price change No consensus on value of β ("holy grail")

 $\rightarrow\,$ Authors well positioned to make another important contribution

Comment #2: Identification

Main estimating equation

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) m c_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

where ε_{ft} includes idiosyncratic firm level demand shocks

Comment #2: Identification

Main estimating equation

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) m c_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

where \mathcal{E}_{ft} includes idiosyncratic firm level demand shocks

- **•** Recall identification assumption: $mc_{f,t-j} \perp \boldsymbol{\varepsilon_{ft}}$
 - Is this plausible? Authors could help us understand this better

Comment #2: Identification

Main estimating equation

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0}^{\infty} (\beta \theta)^{\tau} \left((1 - \Omega) m c_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

where \mathcal{E}_{ft} includes idiosyncratic firm level demand shocks

- **E** Recall identification assumption: $mc_{f,t-j} \perp \varepsilon_{ft}$
 - Is this plausible? Authors could help us understand this better
- Plausible alternative instruments:
 - 1. Foreign components of marginal costs orthogonal to domestic demand (Amiti, Itskokhi & Konings 2017)
 - 2. Shift share instrument for mc_{ft} —oil shock is partial step in this direction

Comment #3: Inflation Inertia vs. Nominal Rigidity Model of GGLT23

$$\pi_{t} = \beta E_{t} \pi_{t+1} + \lambda \left(mc_{t} - mc_{t}^{n} \right)$$
$$p_{ft} = (1 - \theta) \left(1 - \beta \theta \right) \sum_{\tau=0}^{\infty} \left(\beta \theta \right)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

 \rightarrow Heuristically: regressing p_{ft} on $p_{f,t-1}$ w/ instruments identifies nominal rigidity θ

Comment #3: Inflation Inertia vs. Nominal Rigidity Model of GGLT23

$$\pi_{t} = \beta E_{t} \pi_{t+1} + \lambda \left(mc_{t} - mc_{t}^{n} \right)$$
$$p_{ft} = (1 - \theta) \left(1 - \beta \theta \right) \sum_{\tau=0}^{\infty} \left(\beta \theta \right)^{\tau} \left((1 - \Omega) mc_{ft+\tau}^{n} + \Omega p_{it+\tau}^{-f} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

How about Gali & Gertler '99?

$$\pi_t = \beta E_t \pi_{t+1} + \lambda \left(mc_t - mc_t^n \right) + \gamma \pi_{t-1}$$

• Very different aggregate dynamics (e.g. "sacrifice ratio" of disinflation is higher)

Comment #3: Inflation Inertia vs. Nominal Rigidity Model of GGLT23

$$\pi_t = \beta E_t \pi_{t+1} + \lambda \left(mc_t - mc_t^n \right)$$

$$(1 - \theta) \left(1 - \beta \theta \right) \sum_{k=0}^{\infty} \left(\beta \theta \right)^{\tau} \left((1 - \Omega) mc_t^n + \Omega n_t^{-f} \right) + \theta n_t$$

$$p_{ft} = (1 - \theta) (1 - \beta \theta) \sum_{\tau=0} (\beta \theta)^{\tau} \left((1 - \Omega) m c_{ft+\tau}^n + \Omega p_{it+\tau}^{-\tau} \right) + \theta p_{f,t-1} + \varepsilon_{ft}$$

How about Gali & Gertler '99?

$$\pi_t = \beta E_t \pi_{t+1} + \lambda \left(mc_t - mc_t^n \right) + \gamma \pi_{t-1}$$

• Very different aggregate dynamics (e.g. "sacrifice ratio" of disinflation is higher)

If GG99 model is true: regressing p_{ft} on p_{f,t-1} identifies mix of λ and γ
 Can authors rule out GG99 model in favor of GGLT23?

Conclusion

- Great paper
 - General and tractable modelling
 - Careful empirical work
 - Important results
- Comments:
 - 1. More exciting work to be done with estimating eta
 - 2. Useful to know more about identification
 - 3. Inflation inertia vs. nominal rigidity