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Abstract

Banks face different but potentially correlated risks from outside the financial system. Financial connec-
tions can share these risks, but they also create the means by which shocks can be propagated. We examine 
this tradeoff in the context of a new stylized fact we present: German banks are more likely to have finan-
cial connections when they face more similar risks. We develop a model that can rationalize such behavior. 
We argue that such patterns are socially suboptimal and raise systemic risk, but can be explained by risk 
shifting. Risk shifting motivates banks to correlate their failures with their counterparties, even though it 
creates systemic risk.
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1. Introduction

In the financial system, systemic risk comes from two sources. First, banks may be exposed 
to the same real investments. Second, banks have financial exposure to each other. In either case, 
shocks to the real economy can spread across the financial system. As emphasized by policymak-
ers (e.g. Basel Committee on Banking Supervision, 2011), the interaction between real exposure 
and financial exposure is key for financial stability. Conventional wisdom argues banks should 
prefer counterparties with differing real exposure. Then, banks can share real risks across the 
financial system (Rochet and Tirole, 1996; Allen and Gale, 2000). But financial connections 
frequently play the opposite role. Banks often have similar real exposures to their financial coun-
terparties. Financial connections then concentrate real risk. After a shock to the real economy, 
banks are doubly affected—first, through their direct exposure, and second through their indi-
rect exposure via their financial counterparties. In the United States, various anecdotes from the 
2008 financial crisis display this pattern. Many institutions had the same real exposure as their 
financial counterparties, which raised systemic risk:

• Among US commercial banks, over-the-counter (OTC) derivatives trading was concentrated 
at the five largest banks. These banks were financially exposed to each another, while at the 
same time facing the same real exposure to the housing market.1

• Investment banks used monoline insurers to share their subprime mortgage risk, but these 
monoline insurers, through their asset management and collateralized debt obligation (CDO) 
arms, had the same real exposure to subprime mortgages.2

We first present a new stylized fact from the German banking system. Banks have similar 
real exposures to their financial counterparties. Therefore, if German commercial banks lend 
to one another in the interbank market, they tend to lend to similar non-financial firms. This 
fact may be surprising—financial connections do not diversify real exposure. Motivated by this 
stylized fact, we provide a model that can rationalize this behavior even though it generates 
systemic risk. We study a model with limited liability, real investments, and a financial network. 
We characterize socially efficient networks. In these networks, which minimize systemic risk, 
banks have different real exposures from their counterparties. Absent limited liability, banks 
have no incentive to deviate from the socially efficient network. But limited liability leads banks 
to deviate from social efficiency and engage in systemic risk shifting. Banks increase their equity 
values by having the same real exposures as their close financial counterparties. Then, banks fail 
at the same time as their counterparties, raising their values conditional on not failing, and, hence 
their equity values, but also increasing systemic risk.

The German commercial banking system is an ideal setting for studying the relationship be-
tween banks’ financial and real exposures. Supervisory data from the German Credit Register 
records the near-universe of bank-bank and bank-firm lending. Interbank loans proxy for finan-
cial exposures, and commercial loans proxy for real exposures. Large interbank exposures, with 
long-term maturities, create substantial counterparty risk in the financial system.3 Bank-firm 

1 See, for example, the report of the 2011 Financial Crisis Inquiry Commission.
2 SEC, “Risk Management Reviews of Consolidated Supervised Entities,” internal memo to Erik Sirri and others, 

November 6, 2007, p. 3.
3 The share of interbank lending over equity is 17% for banks at the mean of our sample and 128% at the 99th 

percentile. Interbank loans have an average maturity of more than one year.
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Fig. 1. Banks Have Similar Real Exposure to Their Financial Counterparties. Notes: the y-axis is log of net quarterly 
interbank lending between each pair of commercial banks in the German Credit Register for 2006-2014. The x-axis is 
the rank of how similar two banks’ commercial loan portfolios are in a quarter, based on the overlap of the firms to which 
each bank lends. We residualize both variables against time, lender and borrower fixed effects, and plot a binned scatter 
with 20 points.

lending is the largest class of real investments for most banks.4 Thus, Upper and Worms (2004)
and others argue that shocks to firms or sectors can lead to systemic risk in the German financial 
system.

Fig. 1 illustrates our stylized fact. Banks with more similar real exposures tend to lend more 
to each other. The figure relates the similarity between two banks’ non-financial portfolios, and 
the size of their net interbank lending in a given quarter. We calculate a measure of each bank 
pair’s portfolio similarity, based on the overlap in the portfolio of firms to which they lend in a 
given quarter, and rank all bank pairs by this measure. We residualize by a set of fixed effects 
and then relate this measure to interbank lending between each bank pair. We present the result 
in a binned scatterplot. Portfolio similarity and interbank lending are significantly and positively 
related. The effect is large. When two banks move from the 25th to the 75th percentile of non-
financial similarity, their net lending to one another increases by about 31% or EUR 13.8 million. 
The results are statistically significant, robust to restricting only to banks with national coverage, 
and hold after adding borrower-by-quarter, lender-by-quarter and borrower-lender fixed effects.5

Our main measure of real exposure comes from overlap in banks’ portfolios at the firm level, but 
our findings also hold with the analogous sectoral measure of similarity.

The general pattern that more similar nodes are more likely to link to each other in a network 
is known as homophily. Encapsulated in the proverb that “birds of a feather flock together,” this 
pattern has been noticed since at least the 16th century. Homophily is a robust feature in net-

4 The average bank in our sample has about ten times as much in loans to the real economy as in equity. Given the low 
rate of home ownership in Germany, residential lending is small for most banks.

5 Banks with national coverage exclude regional banks such as savings central banks (Landesbanken).
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works.6 Our results document homophily in a new, and perhaps surprising, setting—the German 
banking system.

We develop a model in which banks choose their real exposures and financial connections 
that can rationalize this pattern, even though it is associated with systemic risk. The model has 
three key ingredients: real investments, a financial network, and limited liability. There is a set 
of financial institutions, termed banks. There is a set of real investments that generate random 
returns. Each bank holds a portfolio of the investments. Banks can hold any share in any invest-
ment. Banks also hold financial claims on one another. These claims form a financial network. 
Banks’ market values are determined by the investment returns flowing to each bank. Banks have 
liabilities to external debt holders. The residual market value, after external debt, becomes equity 
value. In states of the world where market values are less than the value of external debt, banks 
fail. These failures trigger discontinuous falls in the value of financial claims, due to default 
costs. By limited liability, equity value is zero if banks fail.

Our model captures a tradeoff between two priorities: risk sharing, and minimizing systemic 
risk. By holding multiple real investments or financial claims on counterparties, banks share the 
risks associated with a given investment. But both investment portfolios and the financial network 
lead to systemic risk. If multiple banks hold the same investment, they may all simultaneously 
fail if the investment has a low return. If banks hold financial claims on one another, then a 
second bank may fail if a first bank’s portfolio has a low return. Default costs amplify systemic 
risk by lowering the value of claims the second bank has with the first bank, when the first bank 
fails.

Our model makes two points. First, the pattern in the data—where banks have similar real 
exposures to their financial counterparties—is not socially efficient. We characterize the socially 
efficient networks and portfolios. Banks should hold different investments from their closest 
financial counterparties. This structure minimizes the likelihood that a bank’s portfolio draws bad 
returns at the same time as its counterparties. Collectively, the banking system then absorbs fewer 
losses, which lowers the risk of bank failures. Our characterization reveals an additional subtlety. 
The social planner optimally partitions the financial network into groups of banks, with strong 
financial claims within groups, and weak claims between groups. This network prevents failures 
after relatively small falls in investment returns, and minimizes systemic risk after large falls in 
returns. The weak financial claims between groups prevent failures from spreading throughout 
the network.

Second, we show that the socially efficient outcome does not arise in equilibrium. Instead, 
consistent with the stylized fact, banks seek to have the same real exposure as their financial 
counterparties. The reason for this behavior is limited liability. The result of this behavior is 
greater systemic risk. Limited liability creates behavior that we and others term systemic risk 
shifting.7

We isolate the role of limited liability through two steps. In the first step, we show deviations 
from the socially efficient outcome cannot raise banks’ expected market values—where market 
values are the sum of external debt and equity. In a deviation, banks can change either their 
financial claims or their investment portfolios. Deviating from the socially efficient outcome 
increases the expected number of failures. These failures create default costs, which lower the 

6 See McPherson et al. (2001) for a survey.
7 See Acharya (2009) for an earlier use of the term.
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market value of the deviating banks through the interconnectedness of the network. Thus, the 
socially efficient outcome can arise in equilibrium if banks maximize market value.

In the second step, we show banks can raise their equity values by deviating from the socially 
efficient outcome. Limited liability, which creates the difference between equity and market 
value, leads to socially inefficient behavior. With limited liability, banks increase their expected 
equity value by failing at the same time as their closest counterparties. Then, neither is affected 
by the default costs associated with the other’s failure. Instead, external debtors lose value from 
counterparties’ default costs. These deviations raise banks’ market value when they do not fail, 
leading to higher equity value on average. Moreover these deviations raise systemic risk—the 
chance that a large share of the network fails. Consequently, there is systemic risk shifting. 
Changes in either portfolios or financial claims can lead to systemic risk shifting. Either change 
can raise equity value if banks become more likely to fail at the same time as their counterparties.

Related Literature
Our paper falls within the financial networks literature. The literature examining how the 

structure of exogenous financial networks affects systemic risk has expanded rapidly. Building 
on early important works, such as Allen and Gale (2000) and Freixas et al. (2000), this litera-
ture emphasizes that interconnections can spread contagion. Networks can generate systemic risk 
by facilitating the spread of relatively large shocks (Gai and Kapadia, 2010), or by interacting 
with various propagation mechanisms, such as bankruptcy costs (Elliott et al., 2014); uncertainty 
about banks’ balance sheets (Caballero and Simsek, 2013; Alvarez and Barlevy, 2014); and fire 
sales (Cifuentes et al., 2005). Correlated exposures have also been shown to make a major con-
tribution to systemic risk (Glasserman and Young, 2015) and will amplify the impact of the other 
mechanisms. Allen and Babus (2009) and Capponi (2016) survey this literature. Since these 
papers consider exogenous networks and fixed real exposures, they do not examine socially ef-
ficient network structures, nor whether individual banks might choose to deviate from the social 
optimum.

Most papers studying financial networks empirically focus on characterizing the network 
structure to identify the risk of contagion (see Upper and Worms (2004) and Craig and von 
Peter (2014) for an analysis of the German interbank network structure). Craig and Ma (2018)
develop a structural model of the German interbank market to study the potential for systemic 
risk.8 A few papers empirically study contagion and systemic risk in financial networks (Furfine, 
2003; Iyer and Peydro, 2011; Denbee et al., 2014; Anderson et al., 2019; Anderson et al., 2020). 
To the best of our knowledge, however, there is no prior empirical paper studying whether banks 
lend to counterparties with a similar loan portfolio.

A smaller literature focuses on socially efficient network structures and the endogenous for-
mation of financial networks, in the presence of systemic risk (see, for example, Gofman, 2017). 
One major departure we make from this literature is by considering the joint choice of financial 
and real exposures. Our analysis is motivated by the stylized fact that banks are more likely to 
lend to other banks which have similar real exposures. Both financial and real exposure choices 
are required to explain this observation.9

8 Since we are interested in the creation of new links, we use the actual transfer of funds between two banks to denote 
interbank lending (i.e. a flow variable). In contrast, Craig and Ma (2018) are interested in credit risk and use the reported 
exposure from historical fund transfers (i.e. a stock variable) to denote interbank exposures.

9 Subsequent to us, Jackson and Pernoud (2019) also investigate this interaction. We compare their results to ours later 
in the paper.
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Two papers close to ours, studying socially efficient network structures, are Cabrales et al. 
(2017) and Acemoglu et al. (2015a). Both examine social efficiency in the context of financial 
contagion. Acemoglu et al. (2015a) identify a key tradeoff facing the social planner. Denser con-
nections prevent bankruptcies from small shocks, but facilitate the spread of contagion from large 
shocks. Therefore, highly connected networks are optimal if all shocks are relatively small. Con-
versely, if shocks are always large, then weak connections in the network can enhance stability 
by preventing the spread of contagion. Our paper builds on this analysis by considering socially 
efficient networks when shocks hitting the system can be both large or small with positive prob-
ability; and introduces an amplification mechanism via default costs.

Cabrales et al. (2017) study the same key tradeoff governing social efficiency as in our paper—
how to limit contagion, while also allowing risk-sharing. They study considerably more general 
shock distributions than we do. Their first set of results can be viewed as a substantial and im-
portant generalization of the Acemoglu et al. (2015a) insight. They find that when shocks are 
sufficiently fat-tailed, the tradeoff is resolved by minimizing the chance of contagion and form-
ing a maximally segmented network. When shocks are sufficiently thin-tailed, the tradeoff is 
resolved by maximizing risk-sharing in a fully integrated network structure. For intermediate 
shock distributions, their results are consistent with our findings. They find conditions under 
which the strength of connections in the network takes, at most, two values. We take this as 
suggestive that the forces we study apply more generally than our two point shock distributions. 
What we get from our more restrictive shock distribution, in combination with including costs 
of financial distress, is that the pattern in which these links are organized is crucial. We are able 
to characterize the socially optimal patterns. Links between different groups of highly connected 
banks must be weak to contain financial distress costs after one group fails.

A growing literature considers endogenous network formation.10 We discuss three papers 
closely related to ours. Each examines why privately and socially optimal behavior might differ. 
First, in Farboodi (2014), banks form links due to intermediation, since some banks have access 
to risky investment opportunities or funding opportunities, and others do not. Banks also interme-
diate to capture rents. Impressively, Farboodi (2014) succeeds in finding equilibrium networks, 
and the equilibrium structure she identifies matches empirically observed financial networks—
there is a core of investment banks connected to each other, each with links to a set a commercial 
banks. In her model private behavior is socially inefficient because core banks behave in an ex-
cessively risky manner to capture intermediation rents. Second, Acemoglu et al. (2015b) also 
focuses on financial intermediation as the reason for network formation. Privately and socially 
efficient behavior may diverge because of a financial network externality—banks contract on a 
bilateral basis, and thus do not account for their role in creating a conduit that allows idiosyn-
cratic shocks to develop into contagion. In our model, systemic risk also arises endogenously 
but from a different set of frictions, pertaining to risk shifting. The stylized fact we present, that 
banks correlate their real exposures with their largest counterparties is suggestive that this friction 
plays a role in practice, although other frictions may, of course, also matter. Third, Erol (2015)
introduces government bailouts into a model of network formation among firms with bilateral 
exposures. Anticipating bailouts leads to “network hazard”—firms become less concerned about 
the choice of their counterparties’ own counterparties. In equilibrium, highly connected central 

10 Papers considering related problems include Leitner (2005), Blume et al. (2011), Allen et al. (2012), Babus (2016), 
Zawadowski (2013), Eisert and Eufinger (2018), Erol and Vohra (2014), Di Maggio and Tahbaz-Salehi (2014), Wang 
(2014), Cohen-Cole et al. (2015), Galeotti et al. (2015), Cabrales et al. (2017), Erol and Ordoñez (2017), Galeotti et al. 
(2017), Kanik (2017), Bernard et al. (2017), Craig and Ma (2018), Chang and Zhang (2018) and Stanton et al. (2018).
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firms emerge in the network. Unlike in our model, however, firms do not decide to correlate their 
real and financial exposures.

Outside the networks literature, the role of risk shifting in generating financial instability has 
been widely discussed in the context of a single-firm framework (e.g. Jensen and Meckling, 
1976). Relatively little work considers risk shifting in a systemic setting. A first exception is 
Acharya (2009). We build on Acharya (2009) by combining portfolio choice of real investments 
with network choices of financial connections. This raises new questions and allows us to provide 
suggestive evidence consistent with risk shifting through portfolio choices in a network setting. 
A second exception is Farhi and Tirole (2012). In their model, banks face liquidity risk. Author-
ities can intervene to improve liquidity. They uncover a strategic complementarity. Each bank 
increases liquidity risk if other banks also have greater liquidity risk. Then, banks are likely to 
be illiquid at the same time, which prompts an intervention from the authorities. Our model also 
identifies a strategic complementarity, but the source is different: arising from limited liability 
instead of intervention by the authorities.

We structure the paper as follows. Section 2 presents our model. Section 3 examines socially 
efficient networks. Section 4 discusses equilibrium networks. Section 5 provides several robust-
ness checks for the stylized fact that banks have similar real and financial exposure. Proofs are 
relegated to Appendix B.

2. The model

We introduce a model to rationalize the stylized fact we presented in the introduction. The 
model has three key ingredients. First, banks have financial claims on one another. Second, banks 
make real investments. Third, there is limited liability. With these ingredients, we ask whether it 
is socially efficient for banks to choose the same real exposures as their financial counterparties—
as in the stylized fact—and whether socially efficient outcomes will arise in equilibrium.

2.1. Banks, investments, and financial claims

Banks. There is a set N = {1, . . . , n} of financial institutions, which we refer to as banks. The 
economy lasts for three periods, t = 0, 1, 2. In period 0, each bank issues debt with face value v
to external debtors, that is, entities outside the financial system.

Investment Portfolio. In period 1, each bank chooses a portfolio of investments which yields 
a stochastic return. The return generated by bank i’s portfolio is pi . There is one unit available 
for each of n types of investment. We let φi ∈ �n denote bank i’s portfolio, where �n is the 
n-dimensional simplex, and use φik ∈ [0, 1] to denote the share of i’s portfolio in investment k. 
Portfolios φ := {φi}i satisfies 

∑
i φik = 1, so the return on all investments goes to some bank. 

We denote the set of possible portfolios by �.
Each investment type k generates a random return Rk . There is a portfolio maintenance cost 

c > 0 for each type of investment bank i makes. Thus, the return on i’s portfolio is

pi =
n∑

k=1

(φikRk − cIφik>0),

where Iφik>0 is an indicator variable taking the value 1 if φik > 0 and 0 otherwise. The portfolio 
maintenance cost c captures monitoring or research costs related to each investment type, or the 
diluting of special expertise when banks hold more diversified portfolios.
7
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Financial Network. Also in period 1, banks form financial claims on each others’ investment 
portfolios. We denote these claims by a matrix A where Aij ≥ 0 is the claim of bank i on the 
return generated by a counterparty bank j ’s investments. Financial claims satisfy 

∑
i Aij = 1, so 

the returns generated by each portfolio go to some bank. Each bank must have weakly stronger 
claims on its own portfolio than any other banks, so Aii ≥ Aji for all i and all j . We can represent 
A as a weighted, directed graph, where the banks are the nodes and the links are financial claims 
between banks. Thus, A is a financial network.

In period 2, returns from the investments realize. The total investment returns flowing to bank 
i is its market value, vi . Thus, the financial network A and investment portfolios � chosen in 
period 1 jointly determine banks’ realized market values in period 2.

Default. Banks can default. If vi < v in period 2, then bank i is unable to repay its debt 
holders in full, which causes i to default. Then default costs lower the returns of i’s portfolio 
by an amount β . Default costs include costs associated with liquidating investments, possibly 
at a discount during financial turmoil; inefficient allocation of resources during default, and so 
forth.11

Market Values. The market value of bank i in period 2 is

vi =
n∑

j=1

Aij (pj − βIvj <v). (1)

Bank i’s market value depends on its financial claims, Aij , and on counterparties’ portfolio 
returns, pj . If j defaults, then i suffers a fall in its market value proportionate to its claim on j ’s 
portfolio. Letting emboldened variables represent vectors, we can rewrite equation (1) as

v = A(p − b(v)) (2)

where b(vi) = βIvj <v . We show in the Online Appendix, Section OA1, that there exists a vector 
of market values v which solves equation (2), and the set of solutions forms a complete lattice. 
The partial order is set inclusion across the set of banks that fail.12 Thus, there is always a solution 
to equation (2) in which a minimal set of banks fail, such that in all other solutions a superset of 
these banks fail. Throughout, we focus on the solution in which this minimal set fails.

Risk Sharing. Banks benefit from risk sharing. Through risk-sharing they can avoid default, 
which would otherwise lower their market values. Banks share risks in two ways. First, banks 
hold financial claims on each others’ portfolios, diversifying their real exposures. However, fi-
nancial claims expose banks to counterparties’ default costs. Second, banks can diversify their 
own portfolios directly. Again, this can help banks to avoid failure in some circumstances. How-
ever, more diversified portfolios incur larger portfolio maintenance costs. For a given bank, either 
diversified investments or financial claims may be more valuable. The size of default costs versus 
portfolio maintenance costs matters. The existing network of financial claims, and other banks’ 
investment portfolios also matter.13

Systemic Risk. Financial claims and real investments also create systemic risk: several banks 
can fail at the same time. There are two mechanisms leading to systemic risk. First, banks might 

11 See Cifuentes et al. (2005), Gai and Kapadia (2010) or Caballero and Simsek (2013) for a more detailed treatment of 
fire sales in financial networks.
12 Eisenberg and Noe (2001), Rogers and Veraart (2013), Elliott et al. (2014) and Acemoglu et al. (2015a) derive similar 
results.
13 Another important reason for financial connections, distinct from risk sharing, is intermediation (e.g. Farboodi, 2014; 
Acemoglu et al., 2015b).
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Fig. 2. Example—Equity and External Debt Value with Limited Liability. Notes: Let v′
i

be the value of i prior to a shock 
ε to i’s investment. For shocks ε < (v′

i
−v)/Aii bank i does not default and the losses due to the shock are spread among 

banks in proportion to their claims on the investment. The shock reduces the equity value of i (Panel (a)) and the value of 
a bank j with claims Aji < Aii (Panel (c)). For larger shocks i fails, resulting in financial distress costs of β that further 
reduce the cashflows of i’s investment. These losses reduce both the value of external debt (Panel (b)) and the value of 
bank j ’s claim on i’s investment (Panel (c)).

have the same real exposures. Several banks might hold the same investment. If that investment 
has a low return, several banks can fail. Second, banks might be exposed to one another through 
the financial system. Suppose a bank has financial claims on a counterparty. If the counterparty’s 
portfolio has a low return, then its market value falls and it may default. If the counterparty 
defaults, then the bank’s market value falls even further. Thus, default costs amplify real shocks 
across the financial network.

2.2. Equity value and limited liability

Let πi be i’s equity value and δi be i’s value of external debt in period 2. There is limited 
liability, so

πi = max{vi − v,0} (3)

δi = min{v, vi}. (4)

When vi ≥ v, bank i does not default. External debtors receive the face value of their debt, v. 
Bank i’s residual market value goes to equity holders. When vi < v, bank i defaults. Equity 
holders receive nothing and external debtors receive the market value vi , which is less than the 
face value of their debt.

Example. A simple thought experiment shows how limited liability affects the value of con-
tracts. Suppose that the return on i’s portfolio falls by some shock of size ε, while all other 
investment returns remain constant. After this shock no banks default. The market value of bank 
j , vj , falls as j ’s claims on i are now worth less—specifically, the value of j ’s claims on i’s 
portfolio falls in value by Ajiε. The equity value of bank i, πi , also falls by Aiiε. Since, by 
assumption i does not fail, the value of bank i’s external debt remains a constant v.

Now suppose that ε is sufficiently large that after the shock, vi < v and i defaults, but small 
enough that no other bank defaults. As bank i defaults, it incurs default costs that further decrease 
the return of its portfolio. Bank i’s equity holders receive nothing after i fails, due to limited 
liability. Bank j ’s claim on i’s portfolio now falls by Aji(ε + β), due to the added impact of 
9
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counterparty default costs. The value of i’s external debt falls by Aii(ε +β), less i’s equity value 
absent the shock.

Finally, suppose that after the shock both i and j default, but no other banks default. In this 
case, j ’s claim on i continues to fall by Aji(ε +β). However, i’s external debtors are exposed to 
j ’s default costs. The debt value of i now falls by Aii(ε + β) + Aijβ , less i’s equity value prior 
to the shock. The key features of these contracts are summarized in Fig. 2.14

2.3. Distribution of investment returns

We assume a simple process for the distribution of returns on investments. With probability 
r , a shock of value ε lowers the return on a single type of investment. The investment is selected 
uniformly at random, independent of banks’ portfolios or financial claims. All investment types 
unaffected by the shock generate a return R̄. If no shock arrives, then all investments return R̄. 
To simplify algebra we also define R = R̄ − c.

Conditional on its occurrence, the shock is large with probability q and small with probability 
(1 − q), that is:

ε =
{

εL > n(R − v) with probability q

εS ∈ (R − v,n(R − v)] with probability (1 − q).
(5)

We also assume that εL ≥ 2εS . Further, small shocks are relatively common compared to large 
shocks. Specifically, we assume 0 < q < 1

n2 .
Discussion of shock process. A mix of small and large shocks creates a tradeoff between 

two priorities: first, risk sharing; and second, avoiding systemic risk. First, banks can share the 
risks associated with small shocks. These shocks are larger than the equity value of a single 
bank. Without financial claims or multiple investments, a bank will fail after a small shock hits. 
But these shocks are small enough that, under some networks and portfolios, banks can share 
risks and prevent any defaults. Second, large shocks create systemic risk. These shocks are large 
enough that at least one bank must default for any network and portfolio, and financial connec-
tions can serve to propagate defaults. Indeed, if large shocks are common, that is, q is large, then 
the benefits of risk sharing will be small and an unconnected financial system will be efficient. 
We assume large shocks are rare to create a tradeoff.15

2.4. Discussion of model assumptions

We close the section by discussing some features of our model in more detail.
Model of the Financial Network. We explore a tradeoff between risk sharing and minimizing 

systemic risk. Our model of financial claims is a simple way of capturing this tradeoff.16 In 
practice, many contracts feature this tradeoff. A real-world example, similar to our model, is an 
unsecured, bilaterally traded, over-the-counter swap. We briefly discuss two alternative models 
that do not permit such a tradeoff. First, a richer contracting space could eliminate the tradeoff. 

14 Our model entertains two possibilities: (i) financial claims are written on the return generated by an investment after 
default costs have been subtracted, in which case financial claims are more senior than external debt; or (ii) financial 
claims are written on the return generated by investments, in which case financial claims are as senior as external debt.
15 In the Online Appendix, Section OA2 we generalize the shock distribution in several respects.
16 See Cabrales et al. (2017), Wang (2014) and Cabrales et al. (2015) for models of the financial network that also 
capture this tradeoff.
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For example, suppose banks i and j write a contract that induces a cash flow from i to j if a small 
shock, but not a large shock, hits j ’s portfolio. This contract can prevent j ’s default after a small 
shock, but leaves i unaffected by the large shock. Thus, there is no tradeoff. Second, standard 
debt contracts, as modeled in the financial networks literature, do not allow risk sharing to prevent 
defaults. Their value does not fall until a bank defaults, and so no risks can be shared among 
banks prior to defaults (see, for example, Eisenberg and Noe, 2001). Of course, in practice, 
the value of debt contracts falls as banks’ default risk rises. Therefore, in a distressed financial 
system, debt contracts may behave similarly to the contracts in our model.

External Debt is Fixed. For simplicity, we do not model banks’ choice of external debt in pe-
riod 0. Instead, the face value of external debt is fixed, and not contingent on the financial network 
or on portfolio choices. One could imagine, equivalently, that external debtors cannot observe the 
financial network when they write contracts.17 In equilibrium, external debtors should correctly 
anticipate the structure of the financial network. They should demand returns that compensate 
them for any risk associated with the equilibrium financial network and portfolios, and v will 
be set accordingly. By taking the external debt of banks as given when banks form the financial 
network and choose portfolios, we do not model this step explicitly. However, our main results 
are all consistent with such behavior. We return to this issue at greater length in Section 4, when 
we discuss equilibrium behavior.

Relation of Model to Stylized Fact. Recall the stylized fact from the introduction: German 
banks with similar real investments have larger financial claims on each other. Our model lets 
banks choose both real investments and financial claims. Therefore, we can investigate what 
mechanisms might reproduce the stylized fact. We can ask whether the pattern is socially effi-
cient, or whether the pattern generates systemic risk.

Our model of financial claims is consistent with German interbank lending, at least in a styl-
ized sense. In the German data, we do not observe the exact contracts used by banks. We cannot 
see whether the contract is collateralized, a cashflow swap, a standard debt contract, or some 
more complicated instrument. Instead, we observe quarterly net transfers between banks. Given 
this ambiguity, we model a general contract, which summarizes banks’ incentives to share risks.

3. Social efficiency

This section characterizes socially efficient networks and portfolios. Banks hold different port-
folios of investments from their close financial counterparties. This finding contrasts with our 
stylized fact: in German data, banks hold similar investments to their close financial counterpar-
ties.

3.1. Social planner’s problem

We start by setting up the social planner’s problem.
Social planner. The social planner chooses the financial network and the set of investment 

portfolios at time t = 1, before investment returns are realized. The social planner maximizes
the sum of expected equity and external debt value. The social planner therefore has a utilitarian 
objective function. However, as all agents in our model are risk-neutral and utility is transferable, 
an outcome maximizes this objective if and only if it is Pareto efficient.

17 Caballero and Simsek (2013) point out that inter-bank financial networks are highly opaque, especially to outsiders.
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Participation constraint. We impose a participation constraint on the social planner. The 
planner must choose a network and a portfolio that does not decrease the expected market value 
of any bank below its autarky market value—that is, the expected market value if the bank has 
no financial claims and holds only a single asset. Since in autarky bank i fails following a large 
or small shock to its investment, the participation constraint implies

E[vi(A, φ)] ≥ R − r

n
(qεL + (1 − q)εS + β), (6)

for all i. We denote the set of column stochastic and non-negative matrices satisfying these 
participation constraints by A.

The participation constraint requires the social planner to give each bank approximately the 
same expected market value. We view the participation constraint as a minimal restriction on the 
planner’s choices that is also normatively appealing.18

We think it is unrealistic for the planner to allocate all the assets to a single bank, and without 
this restriction this provides a way in which the planner can avoid all but one of the banks from 
ever failing

Social Planner’s Problem. The social planner chooses a financial network A ∈A and set of 
portfolios φ ∈ �. Thus, the planner solves the following optimization problem:

max
A∈A,φ∈�

E

[∑
i∈N

πi(A, φ) + δi(A, φ)

]
. (7)

We can simplify the social planner’s problem as follows:

Remark 1. The social planner’s problem is equivalent to minimizing the expected cost of defaults 
plus total portfolio maintenance costs, subject to the same constraints.

3.2. Social planner’s solution

To characterize the social planner’s solution, we will define a particular financial network and 
set of investment portfolios.

Clustered networks. First we define d∗ to be the unique positive root of

d2
i (R − v)β + di

(
(R − v)(εL − εS) − εSβ

)+ εS

(
n(R − v) − εL

)= 0. (8)

For the rest of this section we abstract from the integer problems by assuming that

(i) d∗ is an integer; and
(ii) n/d∗ is an integer.

18 We intend the planner’s problem to provide a benchmark for what might be achievable via financial regulations. 
Without any participation constraint the planner would be incentivized to avoid default costs by allocating all claims on 
assets to a single bank. We view this as an unrealistic outcome for policy to obtain. While this motivates the inclusion 
of a participation constraint, an alternative would be to impose it on equity values instead of market values. That has 
some appeal given that we later consider banks maximizing their equity values as well as their market values. However, 
even when banks make individual choices to maximize shareholder value we expect debt holders to have a voice when 
financial regulations are set. By using market values for the participation constraint we capture this.
12
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Fig. 3. A network in the class A∗(6), with 4 groups and 6 banks in each group.

Under the integer assumptions, we can partition the banks into n/d∗ groups of d∗ banks. We 
refer to each group as a cluster. Now we define the class of networks A∗(d∗). Letting Gi be the 
cluster that i belongs to

A∗(d∗) :=

⎧⎪⎨
⎪⎩A ∈A :

|Gi | = d∗ for all i ∈ N

A∗
ji = AS := R−v

εS
for all i, j : Gi = Gj

A∗
ji = AW := R−v

εL+βd∗ for all i, j : Gi �= Gj

⎫⎪⎬
⎪⎭ .

The class of networks A∗(d∗) is symmetric networks where organizations are partitioned into 
clusters of size d∗, with strong financial claims within clusters, and weaker financial claims 
between clusters. We say that a network A ∈A∗(d∗) is d∗-clustered. The network representation 
of claims for an A ∈A∗(6) is shown in Fig. 3.

Non-overlapping portfolios. We say that banks have non-overlapping portfolios if each 
bank’s portfolio consists of a single type of investment, and all banks make different types of 
investments.

Suppose that banks hold non-overlapping portfolios and the financial network is d∗ clustered. 
Then, by construction, when a small shock hits any bank i’s investment, A∗

jiεS ≤∑k∈N AjkR −
v so that no banks default. When a large shock hits a bank i’s investment, banks in Gi default but 
banks outside Gi do not default. Thus, d∗ banks fail following a large shock to i’s investment 
and no banks fail following a small shock to any investment.

We can now state our first key result.

Proposition 1. Under the maintained assumptions, namely integer conditions (i) and (ii) above 
and q < 1

n2 , there exists an r̄ > 0 such that for all r < r̄ a network A and portfolios φ solve 
the social planner’s problem if A ∈A∗ and portfolios are non-overlapping. Further, as r → 0, a 
network A and portfolios φ solve the social planner’s problem only if A ∈A∗ and portfolios are 
non-overlapping.

3.3. Intuition and proof outline

Intuitively, the networks and portfolios characterized in Proposition 1 are the optimal tradeoff 
between the two competing imperatives in our model. First, the social planner shares risks when 
13
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small shocks arrive, by preventing any defaults. Second, the social planner minimizes systemic 
risk when a large shock arrives.

There are several steps to proving the Proposition. First, we show that for r sufficiently small 
the planner will always choose to share risks through financial claims, instead of having banks 
hold portfolios of multiple investments. This simplifies the problem, allowing us to restrict atten-
tion to non-overlapping portfolios.

Second, we show that perfect risk sharing through financial claims, such that Aij = 1/n for 
all i, j , has fewer expected defaults than any network in which a small shock leads to at least one 
failure. With perfect risk sharing, banks only fail after large shocks. Large shocks are sufficiently 
rare that the social planner prefers to avoid a single failure when a small shock arrives than 
multiple failures when a large shock arrives.

Third, we simplify the problem using the participation constraints. Intuitively, as shocks be-
come rare, the additional value of risk sharing is small. Consequently, the planner must give 
each bank i overall claims on projects that sum to approximately 1 (i.e., 

∑
j

∑
k Aijφjk ≈ 1) 

to satisfy the participation constraint. Thus, the set A must be in the neighborhood of the set of 
doubly stochastic and non-negative matrices (i.e., networks A satisfying 

∑
i Aij =∑i Aji = 1

and Aij ≥ 0).
The first three steps simplify the social planner’s problem. The problem reduces to choosing 

a non-negative and doubly stochastic network that minimizes the expected number of failures 
from large shocks, conditional on preventing failures from small shocks. While this problem is 
more tractable than our starting point, the space of possible networks remains large.

In the fourth step of the proof, we make progress by considering a simpler relaxed problem. 
The solution to this problem provides an upper bound on the planner’s objective, or, equivalently, 
a lower bound on the expected number of failures. We then show that (i) this bound is achieved by 
all networks in the class A∗(d∗) along with non-overlapping portfolios, and (ii) no other network 
portfolio pair achieves this bound.

In this simpler problem, we give up on simultaneously trying to minimize the number of fail-
ures following a large shock to any bank. Instead, we minimize the number of failures following 
a large shock to a given bank i, while making sure there is no failure after a small shock. We 
show that for all doubly stochastic network structures A such that no small shock causes at least 
one bank to fail, at least d∗ banks fail following a large shock to i.

We formalize the solution to the simpler problem in Lemma 2 in the Appendix. The proof 
of Lemma 2 works by combining inequalities. Let Di be the set of banks that fail when a large 
shock hits i. Collectively, banks outside Di cannot have overly large claims on banks in Di , 
otherwise they would fail following a large shock. Banks within Di can have stronger claims, 
but not so strong that they fail when a single small shock hits a bank in Di . Minimizing the size 
of |Di | subject to these constraints implies minimizing di subject to the inequality

d2
i (R − v)β + di

(
(R − v)(εL − εS) − εSβ

)+ εS

(
n(R − v) − εL

)≥ 0.

This implies that the number of failures following a large shock to i must be at least d∗, where 
d∗ is the unique positive root of the left-hand side of the above inequality.

The more general problem of choosing a network structure that simultaneously minimizes the 
number of failures from a large shock to any investment is harder. One might suspect that the 
social planner faces a tradeoff, between minimizing the number of failures after a large shock 
to one investment, and minimizing the number of failures following a large shock to some other 
investment.
14
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But in the fifth step, we show there is no tradeoff. We show any network A ∈A∗(d∗) with non-
overlapping portfolios achieves d∗ failures when a large shock hits any project, and no failures 
otherwise. As networks A ∈A∗(d∗) achieve the upper bound on the planner’s objective identified 
in Lemma 2, we have established the if part of Proposition 1.

In the sixth and final step, we establish the only if part of Proposition 1. We show that only net-
works A ∈A∗(d∗) are socially efficient. Obtaining the upper bound in Lemma 2 requires several 
inequalities to bind, which pins down the strength of each bank’s financial claims. Specifically, it 
can be shown that it is necessary but not sufficient for bank i to have d∗ financial claims of size 
(R − v)/εS and n − d∗ financial claims of size (R − v)/(εL + d∗β). It turns out that the only
way to wire the network so that each bank has financial claims with these values and the bound 
in Lemma 2 is achieved, is to arrange banks in a d∗-clustered network with non-overlapping 
portfolios.

3.4. Discussion

Proposition 1 is our first key finding. The social planner optimally chooses a network that is 
d∗-clustered with non-overlapping portfolios. We characterize socially efficient networks despite 
considering a large space of possible network structures and investment portfolios. We place 
minimal restrictions on the structure of the financial network. For example, some banks could 
have a few large financial counterparties, while other banks might have many small financial 
counterparties. Moreover, each bank can hold any type of investment.

Absence of homophily. The social planner chooses networks and portfolios without ho-
mophily. In a homophilous network, banks with similar real exposures would have similar 
financial exposures. By contrast, in the socially efficient network all banks are connected to one 
another, albeit with financial claims of varying strength. But there is no homophily: the social 
planner chooses non-overlapping portfolios. Further, while the choice of non-overlapping port-
folios is intuitive, it is not obvious. For example, Cabrales et al. (2017) find that when banks face 
uncorrelated real exposures, but are heterogenous in the marginal shock distributions they face, 
homophily in the financial network is efficient—it is efficient for banks’ counterparties to face 
similar shock distributions.

Relation to stylized fact. In the introduction we present a new stylized fact from the Ger-
man interbank system, alongside anecdotal evidence from the 2008 financial crisis. Real-world 
financial systems do exhibit homophily. Banks with similar real exposures have similar finan-
cial exposures, different from the socially efficient outcome in our model. We will study banks’ 
incentives to deviate from socially efficient networks, in Section 4.

Default costs and weak links between clusters. Proposition 1 also allows a better under-
standing of the role of default costs in amplifying systemic risk—and how the socially efficient 
network prevents such amplification from occurring. The relatively weak financial claims be-
tween clusters mitigate the impact of default costs. These claims are weak but positively valued, 
since for any A∗ ∈A∗ we have

0 < A∗
ij = AW < AS = A∗

jk for Gi �= Gj = Gk.

Weak links allow the social planner to prevent failures outside the cluster hit by the shock. Banks 
which do not initially fail after a large shock to another bank might subsequently fail—exposure 
to default costs could cause a second round of defaults. However, in the socially efficient net-
work, the cumulative impact of the large shock and default costs does not cause failures beyond 
the cluster hit by the shock. Instead, the claims between clusters are too weak to transmit the 
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shock outside the cluster. Still, the weak claims enable risk-sharing between clusters after a small 
shock. Consequently fewer banks within a cluster are required in order to absorb the impact of a 
small shock without default. Therefore weak claims between clusters allow an optimal tradeoff 
between risk sharing and minimizing systemic risk.

It is suboptimal for clusters to be fully segmented, such that no bank holds claims on banks 
in another cluster. While full segmentation would prevent any part of the large shock from being 
transmitted outside the cluster, it would also prevent sharing of the small shock between clusters. 
To prevent failures following small shocks, clusters would then have to be larger, and more banks 
would fail following a large shock.19 Fully segmenting the network and allowing no claims 
between clusters, increases the expected number of failures.20

Comparison with the literature. We now place our social planner’s solution in the context 
of the literature. Our formal analysis assumes there can be a large or small shock with some 
probability. Then, neither the empty nor the complete network is optimal.

Suppose instead there is a single shock. If the shock is small, then a complete financial network 
in which Aij = 1/n is socially efficient. This network maximizes risk sharing. If the shock is 
large, then an empty network in which Aii = 1 and Aij = 0 for i �= j . This network minimizes 
systemic risk. As the shock increases from being small to large in size according to our definition, 
the efficient network changes discontinuously. This discussion echoes results in Acemoglu et al. 
(2015a), and their argument that some financial networks may be ‘robust yet fragile’.

Suppose instead there is a continuous distribution of shocks. Two important results from 
Cabrales et al. (2017) are that when the shock distribution is sufficiently fat-tailed, maximal 
segmentation of banks is optimal, while the maximal integration of banks is optimal when the 
distribution is sufficiently thin-tailed. Intuitively, in the fat-tailed case, large shocks are suffi-
ciently common that the tradeoff between avoiding failures from small shocks and preventing 
systemic risk from large shocks is resolved by the corner solution that minimizes systemic risk. 
The opposite is true in the thin-tailed case. This provides an impressive generalization of the 
insight from Acemoglu et al. (2015a).

The distribution of shocks we study leads to an intermediate case—where it is not optimal to 
focus exclusively on either risk sharing or minimizing systemic risk. Cabrales et al. (2017) also 
consider this intermediate case. However, the absence of default costs from their model prevents 
the pattern of connections in socially optimal networks from being pinned down, although they 
are able to conclude that optimal networks feature links of only two different strengths. In this 
intermediate case, by modeling financial distress costs, we find that socially optimal networks 
are d∗-clustered. This yields the insight that weak, but non-zero, claims between clusters are 
optimal.

Extensions. Proposition 1 relies on some strong assumptions. In the Online Appendix, Section 
OA2, we show some ways in which the insight from Proposition 1 that weak links between 
clusters are optimal generalizes.

19 In different settings, Blume et al. (2011) and Erol and Vohra (2014) find that socially efficient networks are fully 
segmented.
20 In the Online Appendix, Section OA3 we present some comparative static results on the size of clusters, number of 
clusters and strength of links between clusters.
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4. Stability of the social planner’s solution

Let us take stock: in socially efficient financial networks and portfolios, banks hold different 
investments from their financial counterparties. Further, we will see in this section that the social 
planner’s solution is a stable outcome in a decentralized financial system where each bank max-
imizes its expected market value. But in German data, banks tend to lend to the same firms and 
industries as their largest financial counterparties.

The analysis in the later half of this section achieves a reconciliation. In the presence of limited 
liability, banks seek to hold investments similar to those of their close financial counterparties, 
though this pattern is not socially efficient and generates systemic risk. This behavior is systemic 
risk shifting.21

4.1. Bank choices

We allow each bank to choose its portfolio φi ∈ �n. We also suppose banks can engage in 
bilateral trades. In these trades we permit the banks to exchange their financial claims on each 
others’ portfolios.

Definition 1. Claims A′ ∈ A can be reached from A through a feasible bilateral trade between i
and j if for all banks k ∈ N :

(i) A′
ik + A′

jk = Aik + Ajk for all k
(ii) Akl = A′

kl for all k �= i, j and all l.

Bilateral trading is intended to capture decentralized trade in inter-bank markets.22,23 We 
assume that each bank’s level of external debt, v, holds constant when banks change either port-
folios or financial claims.24

4.2. If banks maximize market value, the social planner’s solution is stable

We begin by assuming that banks seek to maximize their expected market value, summing 
both debt and equity value. In this case, we will see that the social planner’s solution is stable. 
Thus, the difference between market and equity value, due to limited liability, is crucial.

A network portfolio pair is stable if two conditions are met. First, no bank can unilaterally 
change its portfolio to strictly increase its expected market value. Second, no bank can change 
its portfolio, and simultaneously agree a bilateral trade with another bank to change its financial 
claims, so that these changes strictly increase its expected market value and do not lower the 
other bank’s expected market value.

21 We also show in the Online Appendix, Section OA4 that there is a formal sense in which the planner’s solution favors 
debt holders over equity holders. This creates a basic tension between the interests of the equity holders and efficient 
outcomes. Intuitively, debt holders’ interests are well aligned with the planner’s interests because debt holders like to 
avoid failures.
22 For related studies of network formation financial markets, see Farboodi (2014); Erol and Vohra (2014); Erol (2015); 
or Acemoglu et al. (2015b).
23 A large share of inter-bank trading is bilateral or over-the-counter, as opposed to centralized or exchange-traded (BIS, 
2015).
24 Subsection 4.3 discusses the robustness of our conclusions to this assumption.
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Definition 2. A network portfolio pair (A, φ) is stable if and only if

(i) for all φ′ = (φ′
i , φ−i ) such that φ′

i ∈ �n, E[vi(A, φ′)] ≤ E[vi(A, φ)]; and
(ii) for all φ′ = (φ′

i , φ−i ) such that φ′
i ∈ �n and for every pair of banks i, j ∈ N , if for all feasible 

bilateral trades between i and j yielding claims A′ either

E[vi(A′, φ′)] ≤E[vi(A, φ)] or E[vj (A′, φ′)] < E[vj (A, φ)].

In our stability definition, banks unilaterally change portfolios but bilaterally adjust their fi-
nancial claims. Thus, a network portfolio pair is unstable if a single bank wants to change its 
portfolio holding, keeping fixed the portfolios of the other banks. We interpret this as an im-
plicit market clearing condition—if there is positive excess demand for an investment, then the 
network portfolio pair is unstable. While we think it is natural to model portfolio choices as be-
ing unilateral, our financial claims are inherently bilateral and require a contract to be written 
between two banks. Hence, we require a pair of banks to find a mutually valuable change in fi-
nancial claims for the network portfolio pair to be unstable. In effect, the market for investments 
is “competitive”, whereas the market for financial claims is “game theoretic”.

Under our definition of stability, banks’ incentives are not generally aligned with the social 
planner. Bank i wants to implement a change in φi that increases its market value E[vi(A, φ)], 
even if other banks’ expected market values decline by more than i’s market value increases. 
Similarly, banks i and j will engage in trades that raise their joint market value, even if these 
trades cause other banks’ expected market values to decline by more than i and j gain. Never-
theless, the social planner’s solution is stable.

Proposition 2. There exists a r̄ > 0 such that for all r < r̄ all socially efficient network portfolio 
pairs (A∗, φ∗) are stable.

The potential for systemic risk creates strong externalities that are not being internalized. 
Still, there are no deviations from the planner’s solution that raise market value. The reason 
why the social planner’s solution remains stable in the presence of these externalities is that 
the connectedness of the socially efficient network helps align incentives. Changes that impose 
losses on third parties cause new failures. Through the connectedness of the socially optimal 
network, these losses affect the banks which deviate from the socially efficient network portfolio 
pair. Thus, despite the rich set of available deviations in either portfolios and/or financial claims, 
there is stability.

Example. Consider a socially efficient network portfolio pair (A∗, φ∗), and label investments 
so that φ∗

ii = 1 for all i. Suppose now that bank i decides to change its portfolio. Suppose it still 
makes investments only of one type, but now instead of choosing investments of a different type 
from all other banks, i chooses the same investment type as bank j . Suppose further that j is in 
the same cluster as i (j ∈ Di(A

∗)). Such a change lowers the market value of other banks. Now 
when the small shock hits the investment type j both i and j suffer direct losses, causing all the 
banks in their cluster to fail. The expected losses of a bank k from this event is(

r(1 − q)

n

)
︸ ︷︷ ︸

(
A∗

kiεS︸ ︷︷ ︸
Small shock to investment i

+ A∗
kj εS︸ ︷︷ ︸

Small shock to investmentj

Prob. small shock hits investment j

18



M. Elliott, C.-P. Georg and J. Hazell Journal of Economic Theory 191 (2021) 105157
+
∑
l∈Di

A∗
klβ︸ ︷︷ ︸

Additional defaults

)
. (9)

Before i’s deviation, the expected loss to k from the small shock hitting bank i’s investment 
or bank j ’s investment was a smaller amount:(

r(1 − q)

n

)
︸ ︷︷ ︸

Prob. small shock hits investment i

(
A∗

kiεS

)
︸ ︷︷ ︸

Small shock to investment i

+
(

r(1 − q)

n

)
︸ ︷︷ ︸

Prob. small shock hits investment j

(
A∗

kj εS

)
︸ ︷︷ ︸

Small shock to investment j

. (10)

The change in i’s portfolio choice causes failures that would otherwise not have occurred, and 
these losses are passed around the banks in the system. Comparing equations (10) and (9) shows 
how these additional losses are absorbed by the different banks. Crucially though, bank i accrues 
additional losses of(

r(1 − q)

n

)(∑
l∈Di

A∗
ilβ

)
> 0.

As such, even though the change in portfolio choice by i imposes large negative externalities on 
other banks that i does not internalize, the deviation also reduces i’s expected value making the 
deviation unprofitable.

4.3. If banks maximize equity value, the social planner’s solution is not stable

By contrast, when banks maximize expected equity value, the social planner’s solution is no 
longer stable. Limited liability creates a wedge between equity and market value. In a precise 
sense, limited liability leads equilibrium behavior to differ from the socially efficient outcome.

Suppose that banks maximize expected equity value, that is

E[πi(A, φ)] = E

[
max

{
vi(A, φ) − v,0

}]
. (11)

We adjust the definition of stability accordingly.

Definition 3. A network portfolio pair (A, φ) is stable under limited liability if and only if

(i) for all φ′ = (φ′
i , φ−i ) such that φ′

i ∈ �n, E[πi(A, φ′)] ≤ E[πi(A, φ)]; and
(ii) for all φ′ = (φ′

i , φ−i ) such that φ′
i ∈ �n, and for every pair of banks i, j ∈ N , if for all 

feasible bilateral trades between i and j yielding claims A′ either

E[πi(A′, φ′)] ≤ E[πi(A, φ)] or E[πj (A′, φ′)] < E[πj (A, φ)].

Proposition 3. For any socially efficient network portfolio pair (A∗, φ∗) with d∗ ≥ 2, (A∗, φ∗)
is not stable under limited liability. Further,
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(i) each bank i has a unilateral deviation from (A∗, φ∗) to (A∗, φ′) for φ′ = (φ∗−i , φ
′
i ) that 

raises its expected equity value.
(ii) for each bank i there exists a bank j such that i and j have a feasible bilateral trade from 

(A∗, φ∗) to (A′, φ∗) that strictly increases the expected equity value of both i and j .

Proposition 3 shows that the social planner’s solution is not stable under limited liability. 
Banks have valuable deviations that raise the probability of a bank’s failure, but also raise the 
bank’s expected equity value.

Examples. To gain intuition, consider an example of a portfolio deviation that raises expected 
equity value. Suppose that bank i changes its portfolio. Instead of holding a portfolio consisting 
only of investments of type i, bank i holds a portfolio consisting only of investments of type 
j , the same investment as another bank in i’s cluster. This change causes i to fail when a small 
shock hits investment j . But the failure does not lower i’s equity value. By limited liability, i’s 
equity value after this deviation is zero. Prior to the change, in the social planner’s solution, i’s 
equity value is also zero. Further, when a shock now hits investment type i, no banks are affected 
and i has positive equity value, whereas before it had zero equity value. Overall, i’s expected 
equity value increases. Importantly, i is more likely to fail after the deviation. But the default 
costs affect i’s external debt holders and not i’s equity holders, due to limited liability.

As a second example, banks can deviate with bilateral trades. Consider banks i and j in 
different clusters. Consider a feasible bilateral trade that increases i’s claims on banks within i’s 
cluster, while eliminating i’s claims on j ’s cluster. This trade increases the equity value of bank 
i when the small shock hits j ’s cluster—i is no longer exposed to the small shock. Further, bank 
i’s equity value does not change when a small shock hits its own cluster. Though i now fails, its 
equity value is zero due to limited liability. Prior to the deviation, i’s equity value is also zero 
when a small shock hits its cluster, though i does not fail. So after the deviation, i raises both its 
probability of failure and its expected equity value—by taking advantage of limited liability.

Our stability concept entertains general deviations, in which banks can adjust both their port-
folios and their financial claims. However, the proposition shows that restricted deviations still 
render the social planner’s solution unstable. There are valuable deviations in which banks hold 
fixed their portfolios and only change their financial claims. There are also valuable deviations in 
which banks hold fixed their financial claims and only change their portfolios. Therefore, the in-
stability result does not rely on the interaction between banks’ real and financial exposure. Banks 
can adjust either their financial or their real claims, to make a profitable deviation.

Role of assumption: face value of external debt is fixed. We assume that banks take the 
face value of external debt as fixed when contemplating deviations. However, for our results, 
this is consistent with external debt being endogenously determined and reflecting the risks debt-
holders expect to face before financial claims and portfolios are chosen.25 We expect external 
debtors to anticipate and adjust the cost of their debt to account for risks associated with the 
financial network formed and portfolios chosen—while leaving this step unmodeled. Our results 
on the social planner’s solution, the stability of these efficient network and portfolio pairs when 
banks maximize their expected market values, and the instability of these efficient network and 
portfolio pairs when banks maximize their expected equity values, all require us to consider 
only the level of external debt that would obtain when external debt holders anticipate the social 
planner’s solution will be played. As banks are symmetric in the social planner’s solution, our 

25 Implicitly, this requires that external debt holders cannot issue debt conditional on networks and portfolios.
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assumption that external debt is v for all banks is consistent with this. Of course, the return 
required by debt holders will be different under other stable network and portfolio pairs. In 
combination with the huge space of possible networks portfolio pairs, this presents a further 
difficulty characterizing the set of stable networks. We do not attempt such a characterization, 
but this is an important consideration for future work.

4.4. Systemic risk shifting

Limited liability encourages equity holders to raise the probability of default and deviate from 
social efficiency. This behavior, often termed risk shifting, is well known (Jensen and Meckling, 
1976). However more novel to our setting, risk shifting has consequences for systemic risk—this 
behavior is systemic risk shifting. Banks deviate from the social planner’s solution in order to fail 
at the same time as their counterparties. Therefore, these deviations raise the probability that a 
large part of the system will fail at the same time, after either small or large shocks. Systemic 
risk increases.

Remark 2 clarifies the nature of systemic risk shifting.

Remark 2. Letting Pr(x) denote the probability of the event x, bank i’s equity value can be 
rewritten as

E[πi] = Pr(vi ≥ v)

⎛
⎝∑

j

∑
k

AijE
[
pj |vi ≥ v

]− v

⎞
⎠

− βPr(vi ≥ v)

⎛
⎝∑

j∈N

Aij Pr(vj < v)

⎞
⎠

+ β
∑
j∈N

Aij Cov
[
Ivj <v, Ivi<v

]
. (12)

The first term on the right-hand side of equation (12) is simply the market value of bank i’s 
when i does not default. If the default costs were zero, this would be the only term in equation 
(12). This term captures well-understood risk shifting incentives of bank i stemming from limited 
liability. Bank i would like to increase its market value when it does not fail, but does not care 
about its market value conditional on failing. The second term shows that the equity value of i is 
reduced by the failure of its counterparties in the states in which i does not fail. Also, note that 
portfolio shares and maintenance costs enter portfolio returns pj , so do not directly appear in 
equation (12).

The third term in equation (12) captures systemic risk shifting. i’s equity value is greater if it 
fails at the same time as its counterparties. Intuitively, suppose i fails in different states from its 
counterparties. Then, counterparties’ default costs subtract from i’s equity value in these states, 
lowering expected equity value. By contrast, suppose i fails at the same time as its counterparties. 
Then i’s equity value is zero. Due to limited liability, counterparties’ default costs do not subtract 
from i’s equity value. Instead, counterparty default costs lower the value of i’s external debt. This 
force enables banks’ deviations from the social planner’s solution to raise equity value. Moreover, 
if banks fail at the same time as their counterparties, systemic risk is higher.

Our model lets banks adjust either their investment portfolios or their financial claims. Propo-
sition 3 shows that banks can use either portfolios or financial claims to make deviations that 
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raise equity value. Systemic risk shifting is the reason. By changing either portfolios or financial 
claims, banks increase the likelihood of failing at the same time as their counterparties.

Relation to stylized fact. Recall the stylized fact from the introduction. German banks have 
investments similar to those of their close financial counterparties. Recall, also, the social plan-
ner’s solution. In contrast to the stylized fact, banks hold investments different from those of 
their financial counterparties, in the socially efficient outcome. Systemic risk shifting is a rec-
onciliation. Systemic risk shifting means banks find it privately beneficial to have the same real 
exposure as their financial counterparties. This pattern is not socially efficient, and generates 
systemic risk.

4.5. Systemic risk shifting in other networks and portfolios

We now show that the valuable deviations available to banks, starting from the social planner’s 
solution, are also available in many other networks and portfolios. Systemic risk shifting matters 
more generally.

Lemma 1. For any network portfolio pair (A, φ), bank i can increase its expected equity value 
by deviating to (A, φ′) if

(i) there is an investment type k such that Aiiφik > 0 and vi(A, φ) ≥ v conditional on a small 
shock hitting investments of type k;

(ii) there is an investment type l such that vi(A, φ) < v+ (1 −q)AiiφikεS conditional on a small 
shock hitting investments of type l.

We prove Lemma 1 constructively. The deviation that raises equity value is to a portfolio φ′
i

such that φ′
ij = φij for all j �= k, l, φ′

ik = 0 and φ′
il = φil + φik . Under this deviation, bank i’s 

value is unaffected when a shock hits a bank j �= k, l. When a small shock hits assets of type l, 
bank i’s equity value falls by at most (1 − q)AiiφikεS . Bank i’s profits can fall no further due 
to limited liability. On the other hand, when a shock hits assets of type k, i’s equity value now 
increases by at least AiiφikεS . When a large shock hits investments of type l and k the analysis 
is similar. Overall, expected equity value increases.

Lemma 1 underscores the importance of systemic risk shifting. Equity holders frequently face 
incentives to hold the same investments as their largest counterparties, while increasing systemic 
risk. Suppose, for example, that bank j is a large counterparty of bank i and bank j ’s portfolio 
consists of investments of type l. Then, conditional on a small shock hitting investment type l, 
bank i will suffer direct losses before any bankruptcy costs of AijφjlεS . A sufficient condition 
for bank i’s value to then be less than v + (1 − q)AiiφikεS when a small shock hits assets of type 
l is then that (Aijφjl + Aiiφil)εS > R − v. This condition is easier to satisfy when bank j is a 
large counterparty of bank i, bank j ’s portfolio consists of investments of type l, and bank i also 
has large holdings in investments of type l.

Systemic risk shifting in other papers. In a non-network, two-bank setting, Acharya (2009)
identifies the same systemic risk shifting mechanism, and coins the term. Subsequent to us, Jack-
son and Pernoud (2019) build on our foundations to investigate further the interaction between 
real exposures and financial connections in a more general network setting, with more general 
contractual forms determining the financial interdependencies between banks. The phenomenon 
we study persists in this setting absent limited liability because there is still a complementarity 
between the returns of banks and their counterparties—banks want to avoid failure when their 
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counterparties earn high returns, and fail when counterparties make large losses. This further em-
phasizes the importance of considering banks’ joint problem of choosing financial connections 
and exposures to the real economy when designing regulations.

5. Stylized fact

In this section, we flesh out the stylized fact we presented in the introduction—that German 
commercial banks lend more to each other when they have more similar real exposures. The 
relationship is statistically significant, quantitatively large, and robust across numerous specifi-
cations.

To test our hypothesis that banks lend more to banks with similar real exposures, we use quar-
terly data on all of the roughly 170 commercial banks in Germany from 2006/Q1 to 2014/Q4.26

As discussed at some length in the introduction, among German commercial banks interbank 
loans represent a substantial and systemically important financial connection, while loans to 
firms are an important and substantial asset class generating meaningful real exposures.27 More 
generally, lending to the corporate sector is a growing threat to financial stability worldwide, due 
to rapid growth in leveraged lending.28 Our focus on corporate lending reflects these concerns.

We use quarterly data from the German large credit registry. This data contains detailed in-
formation about bank-firm lending collected under the German Banking Act, which requires all 
financial institutions located in Germany to report the end-of-quarter value of every loan to a firm 
based in Germany, provided the loan exceeded EUR1.5 million during the preceding quarter. The 
credit registry is extensive and covers well over 90% of all interbank loans and more than 70% of 
all bank-firm loans. The interbank data contain net liquidity flows between banks in each quarter, 
but does not report the exact financial instrument used (i.e. loan or bond).

Using these data, we first define our dependent variable log(Amountij,t ) as the log of the 
amount of interbank lending from bank i to bank j at date t , normalized by the total interbank 
lending of bank i at date t . Our main independent variable is a measure of portfolio similarity 
between lender bank and borrower bank.29 This can be measured as follows: consider every 
bank-firm loan as a vector along a basis in a vector space where each direction corresponds to 
a specific asset class. An investment of EUR10 million in asset A is then defined as a vector 
of length 10 along direction A. The portfolio of each bank can then be represented by a vector 
in this K dimensional vector space (where K is the number of firms in the dataset, in our case 
around K = 230, 000). The similarity of two portfolios can then easily be expressed through 

26 The German banking system has about 1, 900 banks at present. Crucially, the German banking system has a three-
pillar structure with, in addition to the commercial banks, about 1, 000 cooperative banks and about 450 savings banks (as 
well as a number of subsidiaries of foreign banks and banks with a special purpose). Cooperative and savings banks do 
not usually access the entire interbank market, but rather transact through their respective head institutions. By focusing
on commercial banks only, we avoid these institutional differences.
27 While we cannot rule out the possibility that some of these loans are syndicated, syndicated loans make up a small 
fraction of all loans to non-financial firms in Germany and even fewer of these are in syndicates with other German 
banks. More details on the syndicated loan market in Europe can be found here.
28 See, for example, FOMC (2018), BoE (2018), IMF (2018) or BIS (2018).
29 Only a fraction of all commercial banks in Germany are publicly listed. Consequently, market-based measures of 
correlation like CoVaR (Adrian and Brunnermeier, 2016) can be computed only for a subset of banks in our sample. 
However, as Abbassi et al. (2017) show, market-based measures of interdependence are a good proxy for correlations 
obtained from bank-level credit register data.
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the Euclidean distance (i.e. the length of the distance vector between the two banks’ portfolio 
vectors):

Distanceij,t =
√√√√ K∑

k=1

(xk
i,t − xk

j,t )
2 (13)

where xk
i,t is bank i’s holding of asset k in quarter t . Two banks have a high portfolio sim-

ilarity if they have a low Euclidean distance. In some specifications we use the normalized 
Euclidean distance, which we compute using portfolio weights instead of the exposures them-
selves: wk

i,t = xk
i,t /Xi,t , where Xi,t is the total bank-firm lending at date t . For robustness, we 

consider a second measure of the similarity between banks’ real exposures. We calculate the 
cosine similarity between two portfolios as

CosineSimilarityij,t =
∑K

k=1 xk
i,t x

k
j,t√∑K

k=1(x
k
i,t )

2
√∑K

k=1(x
k
j,t )

2
(14)

as a robustness check for our main specifications.
For our main specification, we focus on the intensive margin, using an unbalanced panel with 

the amount of additional interbank lending from bank i to bank j in period t as the panel variable. 
Our main specification is

log(Amountij,t ) = βit + βjt + βij + βt + γ log(Distanceij,t ) + εij,t .

log(Amountij,t ) is the log of the amount of interbank lending from bank i to bank j normalized 
by the total amount of interbank lending by bank i at date t . log(Distanceij,t is the Euclidean 
distance between two banks’ portfolios. We also include a quarterly time-fixed effect, annually 
varying borrower and lender fixed effects, as well as a borrower-lender pair fixed effect to ac-
count for unobserved heterogeneity. This is an extremely strong set of fixed effects, meaning 
that time-varying bank controls add very little explanatory value and do not change our results 
qualitatively.30 Since the large credit registry only reports exposures, but not flows, we compute 
the amount of new credit provided from i to j using the difference of the exposure from i to 
j in t , minus the exposure from i to j in t − 1 (i.e. in the previous quarter). We have used the 
convention that a negative flow from i to j is a positive flow from j to i so that we can take 
the log of the amount as the main dependent variable. Using this convention, banks lend more to 
similar banks if the sign of γ is negative.

Results are shown in Table 2 in Appendix A for our main result and in Table 4 for a robustness 
check using cosine similarity as our measure of the similarity between banks’ real exposures. 
In all specifications, banks lend more to partners with similar exposures to the real economy. 
The effects are statistically significant and also quantitatively substantial. In all specifications, 
the relationship remains significant and large. We saturate our estimation with a large set of

30 We also added controls from detailed monthly balance sheet information, using the Bundesbank’s balance sheet 
statistics (BISTA). These controls did not change our results qualitatively. Results for this specification are available 
upon request.
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fixed effects to control for unobserved heterogeneity.31 We always include a time-fixed effect 
to control for trends. In model (1) we also include lender and borrower fixed effects. In model 
(2) we use yearly varying lender and borrower fixed effects, which controls for a substantial 
amount of unobserved variation and, additionally, a borrower-lender pair fixed effect. In model 
(3) we furthermore include a borrower-lender fixed effect, i.e. one fixed effect per borrower-
lender pair.32

In Panel A we compute the normalized Euclidean distance based on banks’ co-investment 
in firms. Most banks only have few firms in common, however, since the total number of firms 
is relatively large compared to the number of firms commercial banks invest in. We find strong 
evidence for our hypothesis in all three specifications. Next, in Panel B, we use the lagged non-
normalized Euclidean distance as the explanatory variable. This allows us to investigate whether 
our results are being driven only by banks’ different portfolio sizes. As results remain statistically 
significant, homophily is present in banks’ portfolio compositions, rather than just their portfolio 
sizes.

As previously discussed, our theory predicts a positive correlation between firms’ real and 
financial exposure, without asserting causality. Thus, we can formulate our empirical question via 
the co-movement of variables, without having to establish claims about causality. Irrespectively, 
it is interesting to investigate whether lagged Euclidean distance explains banks’ propensity to 
link to each other. Panel C reports on this exercise. Finally, in Panel D, as an alternative measure 
of how dissimilar banks’ portfolios are, we classify loans into one of 74 sectors and apply the 
Euclidean distance measure in this space.

In all four estimations we find strong empirical evidence for our hypothesis that banks tend 
to lend to banks that are similar to themselves. Our results are qualitatively robust to further 
robustness checks, including: (i) using an alternative measure of similarity based on the cosine 
similarity of both banks’ portfolios as shown in Panel A of Table 4; and (ii) adding a set of bank-
specific control variables to control for observed heterogeneity. Our results are economically 
significant. As we report in the introduction, when the Euclidean distance between two banks 
decreases from the 75th to the 25th percentile, i.e. when their non-financial similarity increases, 
their net lending grows by roughly 26%.33

In Table 3 we consider the extensive margin of loan creation. We create a binary variable that 
takes a value of one if banks i and j have an interbank loan with one another at date t , and zero 
otherwise. The results from this balanced panel are reported in Panel A. In Panel B we explicitly 
study the creation of new loans. The dependent variable is ENT RYij,t which equals one if there 
exists an interbank loan from bank i to bank j at date t that did not exist on date t − 1. We find 
overwhelming support for our hypothesis.

31 In particular, this accounts for the possibility that a lender is a core bank, while the borrower is a periphery bank. 
Since we even include time-varying lender- and borrower fixed effects, we even allow for the possibility that this feature 
changes over time.
32 Even though we have winsorized the bank-firm and bank-bank exposures at the 5% and 95% levels, our results could 
still be driven by a few outliers. Fig. 1 from the introduction shows that this is not the case. In this figure we plot the 
residuals from regressing the dependent and independent variable on time-varying borrower and lender fixed-effects, as 
well as borrower-lender fixed-effects.
33 This is based on model (1), Panel A from Table 2 and the percentile variables presented in the summary statistics 
(Table 1).
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6. Concluding remarks

This paper makes two contributions. First, we presented a new stylized fact from the German 
banking system. Banks have similar real exposures to their financial counterparties. If German 
commercial banks lend to one another in the interbank market, they tend to lend to similar non-
financial firms. Second, we rationalized this behavior and showed it generates systemic risk. We 
presented a model with limited liability, real investments, and a financial network. We charac-
terized socially efficient networks. In these networks, which minimize systemic risk, banks have 
different real exposures from their counterparties. Absent limited liability, banks have no incen-
tive to deviate from the socially efficient network. But limited liability leads banks to deviate 
from social efficiency and engage in systemic risk shifting. Banks increase their equity values 
by having the same real exposures as their close financial counterparties. Then, banks fail at the 
same time as their counterparties, raising their expected equity value but also increasing systemic 
risk.

Policymakers emphasize jointly considering financial and real exposures when minimizing 
systemic risk (Basel Committee on Banking Supervision, 2011). Much anecdotal evidence points 
in this direction. We provide theory and evidence showing that the joint behavior of real and 
financial exposures matters for systemic risk.

We close with a caveat. Our model predicts only a correlation between banks’ real and fi-
nancial exposures and is silent on causality—it does not matter whether banks adjust their real 
exposures in light of their financial exposure, or adjust their financial exposure in response to 
real exposures. We have, in effect, considered both alternatives. If we changed the model so that 
banks could only engage in unilateral deviations to change the correlation of their real exposures 
with their counterparties, the socially efficient outcome would be stable when banks maximize
their values, but not when they maximize their equity values under limited liability. If we changed 
the model so that banks could only engage in bilateral trades to change their financial exposures 
while holding their real exposures fixed, the socially efficient outcome would be stable when 
banks maximize their values, but not when they maximize their equity values under limited li-
ability as long as failure costs are not too high. Regardless of these details, the stylized fact 
presented in Section 5 is consistent with our model.

Appendix A. Tables

Table 1
Summary statistics for dependent and independent variables.

N mean median sd p25 p75

log(Amountij,t ) 33,891 −6.247527 −5.973928 3.310431 −8.446989 −3.763935
log(Distanceij,t ) 33,891 14.4612 14.7249 1.352575 13.8095 15.3281
log(NormDistanceij,t ) 33,891 0.2540417 0.186755 0.1677311 0.1317385 0.3378451
log(SectorDistanceij,t ) 33,891 15.61501 16.13923 1.373794 15.23235 16.4708

Note: log(Amount)ij,t is the log of the amount of interbank lending from bank i to bank j normalized by the total 
amount of interbank lending by bank i at date t . log(Distanceij,t ) is the log of the Euclidean distance of portfolio choice 
of banks i and j . log(Distanceij,t−1) is the lagged log of the Euclidean distance of portfolio choice of banks i and j . 
log(NormDistanceij,t−1) is the lagged log of the Euclidean distance of the relative portfolio weight (the amount lent 
from bank i to firm k normalized by the total portfolio size of bank i) of banks i and j . And log(SectorDistanceij,t−1)

is the lag of the log of the Euclidean distance of portfolio choices of banks i and j based on their investment not in 
individual firms, but in sectors of the economy.
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Table 2
Interbank lending and portfolio distance – intensive margin.
PANEL A – OVERLAP IN FIRM EXPOSURE – NORMALIZED DISTANCE

log(Amountij,t ) (1) (2) (3)

log(NormDistanceij,t ) −1.509∗∗∗ −2.965∗∗∗ −0.696∗
(−4.53) (−4.58) (−1.70)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 33,885 33,745 33,048
R2 (adjusted) 0.247 0.276 0.491

PANEL B – OVERLAP IN FIRM EXPOSURE – DISTANCE

log(Amountij,t ) (1) (2) (3)

log(Distanceij,t ) −0.608∗∗∗ −0.892∗∗∗ −0.121∗∗
(−9.14) (−10.97) (−2.40)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 33,885 33,745 33,048
R2 (adjusted) 0.417 0.448 0.592

PANEL C – OVERLAP IN FIRM EXPOSURE – LAGGED DISTANCE

log(Amountij,t ) (1) (2) (3)

log(Distanceij,t−1) −0.533∗∗∗ −0.759∗∗∗ −0.0559
(−7.59) (−10.02) (−0.75)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 17,854 17,595 17,034
R2 (adjusted) 0.428 0.472 0.596

PANEL D – OVERLAP IN LAGGED SECTORAL EXPOSURE

log(Amountij,t ) (1) (2) (3)

log(SectorDistanceij,t ) −0.672∗∗∗ −0.716∗∗∗ −0.186
(−10.07) (−10.56) (−1.24)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 17,854 17,595 17,034
R2 (adjusted) 0.438 0.477 0.596

Note: The dependent variable is always log(Amount)ij,t , the log of the amount of interbank lending from bank i to 
bank j normalized by the total amount of interbank lending by bank i at date t . The independent variables are: (i) 
log(NormDistanceij,t ), the log of the Euclidean distance of the relative portfolio weight (the amount lent from bank i
to firm k normalized by the total portfolio size of bank i) of banks i and j ; (ii) log(Distanceij,t ), the log of the Euclidean 
distance of portfolio choice of banks i and j ; and (iii) log(Distanceij,t−1), the lagged log of the Euclidean distance 
of portfolio choice of banks i and j ; (iv) log(SectorDistanceij,t−1), the lag of the log of the Euclidean distance of 
portfolio choices of banks i and j based on their investment not into individual firms, but into sectors of the economy. 
Standard errors are always clustered at the borrower and lender levels.
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Table 3
Interbank lending and portfolio distance – extensive margin.
PANEL A – EXTENSIVE MARGIN

1ij,t (1) (2) (3)

log(NormDistanceij,t−1) −0.307∗∗∗ −0.385∗∗∗ −0.109∗∗∗
(−8.12) (−6.31) (−3.13)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 134,400 134,400 134,400
R2 (adjusted) 0.154 0.193 0.335

PANEL B – NEW CREATION OF LINKS

ENT RYij,t (1) (2) (3)

log(NormDistanceij,t−1) −0.102∗∗∗ −0.0683∗∗∗ −0.0156
(−5.98) (−3.45) (−0.71)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 134,400 134,400 134,400
R2 (adjusted) 0.025 0.038 0.050

Note: In Panel A, the dependent variable is 1ij,t , a dummy variable that equals one if there is a loan from i to j at date 
t and zero otherwise. In Panel B the dependent variable is ENT RYij,t , a dummy variable that equals one if a loan is 
created between banks i and j at date t that did not exist at date t − 1, and zero otherwise. The independent variable 
is in both cases log(NormDistanceij,t ), the log of the Euclidean distance of the relative portfolio weight (the amount 
lent from bank i to firm k normalized by the total portfolio size of bank i) of banks i and j . Standard errors are always 
clustered at the borrower and lender levels.
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Table 4
Interbank lending and portfolio distance – robustness checks.
PANEL A – INTENSIVE MARGIN

log(Amountij,t ) (1) (2) (3)

log(CosineSimilarityij,t−1) 0.106∗∗∗ 0.0995∗∗∗ −0.0297
(6.16) (4.82) (2.31)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 26,174 25,983 25,488
R2 (adjusted) 0.28 0.309 0.500

PANEL B – EXTENSIVE MARGIN

1ij,t (1) (2) (3)

log(CosineSimilarityij,t−1) 0.891∗ 1.398∗∗∗ −0.0470
(1.95) (2.68) (−0.17)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 79,873 79,806 79,691
R2 (adjusted) 0.182 0.219 0.350

PANEL C – FREQUENTLY INTERACTING PAIRS ONLY

log(Amountij,t ) (1) (2) (3)

log(NormDistanceij,t ) −1.427∗∗∗ −3.081∗∗∗ −0.589
(−4.16) (−4.39) (−1.56)

Time FE Yes Yes Yes
Lender + Borrower FE Yes - -
Time-varying Lender + Borrower FEs No Yes Yes
Borrower-Lender FE No No Yes
N 31,303 31,163 30,466
R2 (adjusted) 0.239 0.269 0.486

Note: In Panel A, the dependent variable is log(Amount)ij,t , the log of the amount of interbank lending from bank i
to bank j normalized by the total amount of interbank lending by bank i at date t . In Panel B, the dependent variable 
is 1ij,t , a dummy variable that equals one if there is a loan from i to j at date t and zero otherwise. In Panel B the 
dependent variable is ENT RYij,t , a dummy variable that equals one if a loan is created between banks i and j at date t
that did not exist at date t −1, and zero otherwise. The independent variable is in both cases log(CosineSimilarityij,t ), 
the log of the cosine similarity of the relative portfolio weight (the amount lent from bank i to firm k normalized by the 
total portfolio size of bank i) of banks i and j . In Panel C we have restricted the sample on infrequent linkages only, i.e. 
on borrower-lender pairs that have a connection with one another at most 20% of the time. The independent variable 
is log(NormDistanceij,t−1) the lagged log of the Euclidean distance of the relative portfolio weight (the amount lent 
from bank i to firm k normalized by the total portfolio size of bank i) of banks i and j . The computation is conditional 
on two banks having at least one exposure in common. Standard errors are always clustered at the borrower and lender 
levels.
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Appendix B. Omitted proofs

B.1. Proof of Remark 1

Using equations (3) and (4) we have that

E

[∑
i∈N

πi + δi

]
= E

[∑
i∈N

max{vi − v,0} + min{v, vi}
]

=
∑
i∈N

∑
j∈N

AijE[pj ] − β
∑
i∈N

∑
j∈N

AijE[Ivj <v]

Noting that E[pj ] = R̄−rE[ε]/n −∑k cIφik>0; and that 
∑

i∈N Aij = 1 because the dependency 
matrix is column stochastic, it follows that:

E

[∑
i∈N

πi + δi

]
= nR̄ − rE[ε] −

∑
j

∑
k

cIφik>0 − βE

⎡
⎣∑

j∈N

Ivj <vj

⎤
⎦

= nR − rE[ε] −E[cost. of defaults] −
∑
j

∑
k

cIφik>0

︸ ︷︷ ︸
portfolio costs

Since all but the final two term of the above equation are exogenously given, the social planner 
maximizes E 

[∑
i∈N πi + δi

]
by minimizing the expected cost of defaults less portfolio mainte-

nance costs. �
B.2. Proof of Proposition 1: preliminaries

We begin by stating and then proving a Lemma. We define a network to be η-doubly stochastic 
if it is column stochastic and 

∑
j Aij ∈ [1 − η, 1 + η] for all i.

Lemma 2. If banks have non-overlapping portfolios, there exists a η̄ > 0 such that for all η < η̄, 
in all η-doubly stochastic network structures A for which no small shock always causes at least 
one bank to fail, at least d∗ banks fail following a large shock to i.

Let A(η) be the set of non-negative, η-doubly stochastic, n-by-n matrices. Let Di(A) be the 
set of organizations that fail following a large shock to i, and set di(A) = |Di(A)|. Now consider 
the following problem,

P1: minA∈A(η) di(A) subject to AjkεS ≤ (1 + η)R − v for all j, k ∈ N

As A must be η-doubly stochastic, the equity value of each bank absent a shock is at least 
(1 − η)R − v and at most (1 + η)R − v. As, by definition, each organization j /∈ Di does not 
fail following a large shock to i, an upper bound on the losses absorbed by banks not in Di after 
a large shock to i is then (n − di)((1 + η)R − v). The remaining losses must be absorbed by 
the remaining banks. Thus, collectively organizations in Di incur losses of at least εL + diβ −
[n((1 + η)R − v) − (1 + η)di(R − v)], and so
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∑
j∈Di

⎡
⎣∑

k∈Di

Ajkβ + AjiεL

⎤
⎦≥ εL + diβ − [n((1 + η)R − v) − di((1 + η)R − v)]. (15)

It follows immediately from the constraints in P1 that∑
j∈Di

Aji ≤ di(R(1 + η) − v)

εS

, (16)

and ∑
j∈Di

∑
k∈Di

Ajk ≤ d2
i (R(1 + η) − v)

εS

. (17)

Combining inequalities (15), (16) and (17)

f (di) :=d2
i

[
(1 + η)Rβ − vβ

]

+ di

[
((1 + η)R − v)(εL − εS) − εSβ

]
+ εS[n((1 + η)R − v) − εL] ≥ 0.

For all η sufficiently small, as εL > n(R − v), the constant term of this quadratic equation is 
always negative; and the quadratic coefficient is always positive. It follows from the quadratic for-
mula that f (di) always has exactly one positive real root, which we denote by d∗

i (η). Moreover, 
as f (di) increases in di at d∗

i (η), for values of di < d∗
i (η) the constraint is violated (f (di) < 0). 

Thus, 
d∗
i (η)� is the unique solution to P1.

Now consider the value of d∗
i (η) as η → 0. By the quadratic formula the positive root of 

the inequality, d∗
i (η), is continuous in η. Moreover, by Remark 2 in Section OA3 of the Online 

Appendix, d∗
i (η) decreases in R and so also decreases in η. Thus, for all η > 0, d∗

i (η) < d∗
i . 

Finally, as by assumption d∗
i is an integer, for all η sufficiently small, 
d∗

i (η)� = d∗. Hence, for 
all η sufficiently small, the unique solution to P1 is d∗.

We now argue that the solution to P1 provides a lower bound on the number of failures that 
will hit following a large shock to i, subject to there being no small shock that always causes at 
least one bank to fail. Bank j ’s equity value in any state of the world in which a small shock hits 
k’s project is at most∑

l

AjlR − AjkεS − v = ((1 + η)R − v) − AjkεS.

The constraint that no small shock always causes at least one bank to fail therefore implies that 
Ajk ≤ ((1 + η)R − v)/εS for all j , and all k. This is the constraint imposed in P1, and so the 
solution to P1 provides a lower bound on the number of failures that must be incurred following 
a large shock to i, if a network is chosen that avoids there being a failure for sure after a small 
shock hits any bank. �
B.3. Proof of Proposition 1

There are five steps to the proof: First, we show that the planner will always choose non-
overlapping portfolios. Second, we show that there can be no small shock that results in one or 
more failures in a socially optimal network. Third, we show that the participation constraints 
mean that for all η > 0, there exists a r̄ > 0 such that for all r < r̄ the social planner must choose 
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a η-doubly stochastic network. Fourth, we apply Lemma 2 to show that all d∗-clustered networks 
with separate shocks are socially optimal for all r > 0 sufficiently small. Finally, we show that all 
socially optimal networks are d∗-clustered with non-overlapping portfolios for r > 0 sufficiently 
small.

Step 1: Non-overlapping portfolios.
Consider any feasible portfolio φ and network A, where φ does not satisfy the non-

overlapping portfolios condition. This generates claims for each bank i on assets of type k equal 
to 
∑

j Aijφjk . Consider now the alternative network portfolio pair φ′ and network A′. We let φ′
be the non-overlapping portfolios in which each bank i only makes investments of type i. Thus, 
φ′

ii = 1 and φ′
ij = 0 for all i and all j �= i. For all bank pairs i, k, we set A′

ik =∑j Aijφjk . Note 
that ∑

i

A′
ik =
∑

i

∑
j

Aijφjk =
∑
j

∑
i

Aijφjk =
∑
j

φjk = 1.

Thus the network A′ is non-negative and column stochastic, and thus feasible.
Suppose then the planner chooses the network portfolio pair (A′, φ′) instead of (A, φ). Sup-

pose first that r = c = 0. Then (A′, φ′) and (A, φ), by construction, generate exactly the same 
market values for all banks in all states of the world. Thus, the planner would be indifferent 
between them. Suppose this leads to a value of V for the planner’s objective. Now consider the 
case in which r = 0, but c > 0. In this case, the planner’s objective decreases by a strictly positive 
amount ζ > 0.

Now we consider r > 0 and c > 0. By Remark 1, the social planner seeks to minimize 

βE 
[∑

j∈N Ivj <vj

]
+∑j

∑
k cIφik>0. The first term in the objective can differ under the net-

work portfolio pairs (A′, φ′) and (A, φ) as in the two cases different numbers of banks may fail 
in different states of the world. However, the value of this difference in the planner’s objective 
is bounded from above by rnβ (supposing there are never any failures in one case and that all 
banks fail following any shock in the other case). However, for all c > 0 there exists a r̄ > 0
such that for all r < r̄ we have rnβ < ζ . Thus, for all r sufficiently small, the planner always 
chooses non-overlapping portfolios. For the remainder of the proof we use this result and restrict 
attention to non-overlapping portfolios.

Step 2: No small shocks cause any failures. We show that the planner always chooses a 
network satisfying this by demonstrating that any network in which a small shock causes at least 
one failure is dominated by the complete network in which Aij = 1/n for all i and all j .

Under the complete network, the average value of a bank (assuming non-overlapping portfo-
lios and recalling that R = R̄ − c) is

R − (1 − q)rεS/n − qr(εL + nβ)/n.

The first term is the average project return absent any shocks, the second term represents losses 
from small shocks, which never result in a failure, and the third term represents losses from large 
shocks which always result in n failures.

An upper bound (that is not achievable) on the average value of a bank when there is a one 
project that when hit by a small shock always results in at least one failure, is given by the average 
value that would result assuming there are never any failures from any shocks to other projects 
and there is exactly one failure following a small or large shock to this project. This upper bound 
is

R − (1 − q)rεS/n − qrεL/n − rβ/n2.
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The first term is the average returns absent any shocks, the second term represents direct losses 
from small shocks, the third term represents direct losses from large shocks, and the fourth term 
represents losses from a project that results in one failure when it is hit by a small (or large) 
shock. This fourth term is given by the product of the probability with which a shock hits the 
project in question (r/n) and the average loss per bank from a failure (β/n). Thus, a sufficient 
condition for the complete network to be preferred is that q < 1/n2, which holds by assumption.

Step 3: Row stochasticity. We now show that for r sufficiently small the planner will choose 
an approximately doubly stochastic network. We do so in two steps. First, we show that there 
exists a row stochastic network satisfying the participation constraints for all r ∈ [0, 1]. We then 
show that for all η > 0 there exists a r̄ > 0 such that for r < r̄ , any network that is not η-doubly 
stochastic will violate a participation constraint.

It is straightforward to verify that any network A ∈ A∗ satisfies the participation constraints 
for all r ∈ [0, 1]. The participation constraints require that

vi(A) ≥ R − r

n
(qεL + (1 − q)εS + β) . (18)

This is satisfied for any network A ∈A∗ because q < 1/d∗. For any A ∈A∗,

vi(A) = R − r

n

(
qεL + (1 − q)εS + qd∗β

)
.

By inspection, the participation constraint (equation (18)) is continuous in r and
limr→0 vi(A) =∑j AijR ≥ R for all i. This is equivalent to 

∑
j Aij ≥ 1 for all i. As, by column 

stochasticity, 
∑

i

∑
j Aij = n, if there is any i such that 

∑
j Aij > 1 there must exist a k such 

that 
∑

j Akj < 1 implying that at least one participation constraint will be violated in the limit. 
Thus, in the limit, satisfying all the participation constraints requires the network to be doubly 
stochastic. Further, by the continuity of the participation constraint in r , for all η > 0 there exists 
a r̄ > 0 such that for r < r̄ , any network that is not η-doubly stochastic will violate a participation 
constraint.

Step 4: d∗-clustered networks obtain the bound. By Step 2, for all socially optimal net-
works there are never any failures following a small shock. By step 3, for all η > 0, there exists a 
r̄ > 0 such that for all r < r̄ the planner must choose a network that is η-doubly stochastic. Thus, 
there exists a r̄ > 0 such that for all r < r̄ the lower bound on the expected number of failures that 
must occur when a large shock hits a given organization i that we found in Lemma 2 holds in all 
solutions to the social planner’s problem. Specifically, Lemma 2 shows that in a socially optimal 
network there must be at least d∗ failures following a large shock to any project for all r > 0
sufficiently small.34 We show now that all networks A ∈ A∗ achieve this bound simultaneously 
for all i when r is sufficiently small.

The class of networks A∗ is defined by partitioning the banks into groups such that

(i) Aji = R−v

εS
if Gi = Gj .

(ii) Aji = R−v

εL+βd∗ if Gi �= Gj .
(iii) |Gi | = d∗ for all i ∈ N .

34 The lower bound d∗ , given by the positive root of f (di ) as defined in equation (18), was obtained by minimizing the 
number of failures when a large shock hits bank i without regard to how many banks fail following a large shock to other 
banks. Thus, any network can at best achieve the lower bound of d∗ failures following a large shock to all banks i while 
having no failures otherwise, and any such network will be socially optimal.
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If a small shock hits a bank i (and no other bank is hit by a small shock at the same time) 
then j ’s equity value will be R − v − AjiεS . Substituting in the possible values of Aji above, 
if j ∈ Gi then this equity value is weakly positive and j does not fail while, if j /∈ Gi then this 
equity value is strictly positive and j does not fail. Thus, there are no failures following a small 
shock if there are separate shocks. If a large shock hits any bank i then j fails if j ∈ Gi , but if 
j /∈ Gi then j ’s equity value is R − v −AjiεL −Ajid

∗β , which is weakly positive and so j does 
not fail. Thus, the lower bound characterized in Lemma 2, is obtained and there exists a r̄ > 0
such that for all r < r̄ networks A ∈A∗ are socially optimal.

Step 5: Only d∗-clustered networks obtain the bound. We now show that only networks 
A ∈A∗ can be socially optimal for r sufficiently small.

By step 2 all socially optimal networks must have no failures following any small shock, and 
by Lemma 2, for r sufficiently small all socially optimal networks must have exactly d∗ failures 
following every large shock. The proof of Lemma 2 first placed an lower bound on the number 
of failures for η-doubly stochastic networks of d∗(η), and then showed that 
d∗(η)� = d∗ for all 
η sufficiently small. Obtaining the lower bound d∗(η) required inequalities (15), (16) and (17)
to all bind. By inequality (16) we must have 

∑
j∈Di

Aji = di(R(1 + η) − v)/εS . As there are no 
failures following a small shock, we also know that Ajk ≤ (R(1 + η) − v)/εS for all j, k, and so 
we must have Ajk = (R(1 + η) − v)/εS , for all j, k ∈ Di and for all i ∈ N .

There then exists a η̄ > 0 such that for all η < η̄ the following argument holds: If j, k ∈ Di

then AjkεL > R(1 +η) −v. This implies that j fails following a large shock to k, and so j ∈ Dk . 
Hence, Dk ⊇ Di . As i ∈ Di , we conclude that i ∈ Dk . But then, if j, i ∈ Dk then AjiεL > R − v

and j also fails following a large shock to i. Thus, Di ⊆ Dk . Combining set inclusions we 
conclude that Di = Dk for all k ∈ Di . Hence, to achieve the lower bound for all i ∈ N , the set of 
banks N must be partitioned into disjoint subsets such that when a large shock hits the investment 
of any bank in the set, all banks in the set default.

As inequality (15) in the proof of Lemma 2 must bind to achieve the bound, the losses collec-
tively absorbed by banks j /∈ Di after a large shock to investment i are (n −d∗(η))(R(1 +η) −v). 
As each of these banks is not in Di , the most losses any one of them can absorb is R(1 + η) − v

(otherwise they would fail following a large shock to i and would be in Di). Thus, for all j /∈ Di ,⎛
⎝AjiεL +

∑
k∈Di

Ajkβ

⎞
⎠= R(1 + η) − v. (19)

Similarly, to prevent more than d∗ failures when a large shock hits bank h ∈ Dh,⎛
⎝AjhεL +

∑
k∈Dh

Ajkβ

⎞
⎠= R(1 + η) − v. (20)

Rearranging equation (20), and as Di = Dh for all h ∈ Di ,

Ajh =
(

R(1 + η) −∑k∈Di
Ajkβ − v

εL

)
,

for all j /∈ Di and for all h ∈ Di . Thus, Ajk = Ajh for all j /∈ Di and for all k, h ∈ Di , and so

Ajh = R(1 + η) − v

εL + βd∗ , (21)

for all j /∈ Di and for all h ∈ Di .
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Combining the conditions we have found, for all η sufficiently small, any network A that 
achieves the lower bound of d∗(η) failures must satisfy:

(i) Aij = R(1+η)−v

εS
if Di = Dj .

(ii) Aij = R(1+η)−v

εL+βd∗ if Di �= Dj .
(iii) |Di | = d∗(η) for all i ∈ N .

As there are, by assumption, no integer problems, d∗ = limη→0 d∗(η) and n/d∗ are integers. 
Moreover, as argued in the proof of Lemma 2, d∗(η) is continuous in η and converges to d∗ from 
below as η → 0. Thus, for all η sufficiently small 
d∗(η)� = d∗.

B.4. Proof of Proposition 2

Let ωLk and ωSk denote the states of the world in which a large shock and small shock hit 
investments of type k respectively. Consider a socially optimal network portfolio pair (A∗, φ∗), 
and without loss of generality let φ∗

ii = 1 for all i. Define the set of network portfolio pairs D by 
the pairs consisting of networks A′ that can be reached via a feasible trade between i and j from 
A∗, and portfolios φ′ = (φ∗−i , φ

′
i ) such that φ′

i ∈ �n. The following four lemmas are helpful.

Lemma 3. For all (A′, φ′) ∈ D if φ′
ik > 0 for k �= i then

(i) If k ∈ Di and j /∈ Di then all banks Di \ {i} fail in state of the world ωSk , while if k ∈ Di

and j ∈ Di then all banks Di \ {i, j} fail and at least one of i and j fail in state of the world 
ωSk .

(ii) If k /∈ Di then all banks N \ {i, j} fail and i and/or j fail in state of the world ωLk .
(iii) If k ∈ Di and A′ = A∗ then all banks Di \ {i} fail in state of the world ωSk .
(iv) If k /∈ Di and A′ = A∗ then all banks N fail following a large shock to assets of type k.

Lemma 4. For all (A′, φ′) ∈ D, in state of the world ωLk

(i) If k /∈ Di and k /∈ Dj , then banks Dk fail. If k /∈ Di but k ∈ Dj , then banks Dj \ {j} fail and 
j and/or i fail.

(ii) If k ∈ Di \ {i} and j /∈ Di , then banks Di \ {i} fail and i and/or j fail.
(iii) If k ∈ Di \ {i} and j ∈ Di , then banks Di \ {i, j} fail and i and/or j fail.
(iv) If k ∈ Di \ {i} and A′ = A∗ banks Di fail.

Lemma 5. For all η > 0 and all (A′, φ′) ∈ D there exists a r̄ > 0 such that for all r < r̄ if 
vi((A

′, φ′)) ≥ vi((A
∗, φ∗)) and vj ((A

′, φ′)) ≥ vj ((A
∗, φ∗)), then 1 − η <

∑
m A′

jm < 1 + η and 
1 − η <

∑
m A′

im < 1 + η.

We refer to new counterparty losses as losses incurred in a state of world ω that would not 
have been incurred in the same state of the world ω for (A∗, φ∗).

Lemma 6. If φ′
ik > 0, k /∈ Di and vi((A

′, φ′)) +vj ((A
′, φ′)) ≥ vi((A

∗, φ∗)) +vj ((A
∗, φ∗)), then 

the new expected joint counterparty losses of i and j under (A′, φ′) are at least

2(d∗AS + (n − 2d∗)AW)βrq
.

n
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Unilateral Deviations We begin by considering unilateral deviations so that (A′, φ′) =
(A∗, φ′). Note that

E[vi(A
∗, φ′)] =R̄ − r

(
d∗AS + (n − d∗)AW

n

)
(qεL + (1 − q)εS)

− β
∑

l

A∗
ilPr
[
vl < v|A∗, φ′]−∑

k

cIφik>0.

We therefore have that

E[vi(A
∗, φ′)] −E[vi(A

∗, φ∗)] ≤ β
∑

l

A∗
ilPr
[
vl < v|A∗, φ∗]

− β
∑

l

A∗
ilPr
[
vl < v|A∗, φ′] (22)

The inequality will hold with equality when i’s portfolio φ′
i contains only one asset type, and 

otherwise with strict inequality. Equation (22) show that the profitability of the deviation can be 
evaluated by considering the expected counterparty losses that i incurs. Following a deviation 
there must exist an asset type k �= i such that φik > 0. We break this down into two cases, k ∈ Di

and k /∈ Di .
If k ∈ Di then by part (iii) of Lemma 3, all banks Di \ {i} fail following a small shock 

to assets of type k. Thus, the deviation generates new expected counterparty losses for i of 
AS(d∗−1)βr(1−q)

n
, where AS(d∗ − 1)β are the losses incurred conditional on a small shock hit-

ting assets of type k, and r(1 − q)/n is the probability of this happening. By parts (i) and (iv) of 
Lemma 4, as for socially optimal network portfolio pairs, banks Dl fail when a large shock hits 
a bank l �= i for any φ′

i ∈ �n. Thus, the most that i can save in expected counterparty losses are 
the losses associated with the failures that occur when a large shock hits assets of type i under 
(A∗, φ∗). The maximum possible value of these savings to i is ASd∗βrq

n
. Thus, the deviation is 

unprofitable because

ASβ(d∗ − 1)r(1 − q)

n
>

ASβrqd∗

n
,

where the inequality follows from q < 1/n2.
If k /∈ Di then by part (iv) of Lemma 3 all banks N will fail following a large shock to assets 

of type k. This generates new counterparty losses for i of (ASd∗+AW (n−2d∗))βrq
n

. Again, an upper 

bound on what can be saved from a deviation is ASβrqd∗
n

and so, as

(ASd∗ + AW(n − 2d∗))βrq

n
>

ASd∗βrq

n
,

the deviation is unprofitable.
Bilateral Deviations
We will use v′

l in place of vl(A
′, φ′) and v∗

l in place of vl(A
∗, φ∗) for all l to save on notation. 

We will show that the overall change in expected values for banks i and j when moving from 
the network portfolio pair (A∗, φ∗) to (A′, φ′) decreases, so that at least one bank must be made 
worse off by any possible deviation.

E[v′ + v′ ] −E[v∗ + v∗]
i j i j
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≤ E

[∑
l

∑
k

(A′
il + A′

j l)φ
′
lkpk

]
−E

[∑
l

∑
k

(A∗
il + A∗

j l)φ
∗
lkpk

]

−
∑

l

(A′
il + A′

j l)βPr
[
vl < v|A′, φ′]+∑

l

(A∗
il + A∗

j l)βPr
[
vl < v|A∗, φ∗]

=
∑

l

(A∗
il + A∗

j l)β
(
Pr
[
vl < v|A∗, φ∗]− Pr

[
vl < v|A′, φ′]) (23)

This first inequality holds with equality when i’s portfolio φ′
i contains only one asset type and 

otherwise with strict inequality. The next equality holds because in all feasible bilateral trade 
A′

il +A′
j l = A∗

il +A∗
j l . Inequality (23) shows that for there to be a jointly profitable deviation for 

banks i and j , they must reduce their joint expected counterparty losses.
CASE 1: Di = Dj

By Lemma 4 the only possible failures that might be prevented when a large shock hits assets 
of type k �= i, is a single failure of either i or j , and that is only possible for k ∈ Di . The joint 
expected value of preventing all such failures to i and j is 2ASβrq(d∗ − 1)/n—banks i and j
jointly save costs of 2ASβ when a large shock hits a bank k ∈ Di \{i}, and the probability of such 
a shock hitting is rq(d∗ − 1)/n. In addition, banks i and j can jointly save at most 2ASd∗βrq/n

when a large shock hits bank i. This places an upper bound on the possible value of the deviation 
of

2ASβrq(2d∗ − 1)

n
.

We show now that, in fact, in any profitable deviation banks Di will fail following a large 
shock to assets of type k ∈ Di \ {i}. For either i or j to survive in state of the world ωLk , its value 
in this state of the world has to increase compared to its value under (A∗, φ∗). Without loss of 
generality, suppose that bank i survives in this state of the world (as j ∈ Di the argument for j
is identical). Then, as k ∈ Di \ {i}

vi(A
′, φ′|ωLk) ≥ v = R − A∗

ikεS.

We also know, under the assumption that i avoids failure, that

vi(A
′, φ′|ωLk) ≤ R

∑
m

A′
im − A′

ikεL − β
∑

l∈Di\{i}
A′

il ,

where the inequality comes from the lower bound on portfolio maintenance costs of c.
Thus, we must have

R
∑
m

A′
im − A′

ikεL − β
∑

l∈Di\{i}
Ail ≥ R − A∗

ikεS.

By Lemma 5, for all η > 0 there exists a r̄ > 0 such that for all r < r̄ we have 
∑

m A′
im ≤ (1 +η). 

Hence, for r < r̄ , we need

AS − A′
ik ≥ AS(εL − εS) − ηR

εL

.

As AS(εL − εS) > 0, there exists a r̄ > 0 such that for all r < r̄ in all profitable bilateral trades, 
AS(εL − εS) > ηR. Thus, for all r < r̄ we have that A′

ik < AS . As the trade must be feasible, 
this implies that A′

jk > AS , and, hence j now fails following a small shock to k. This has a joint 
expected cost to i and j of at least
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2ASβr(1 − q)

n
>

2ASβrq(2d∗ − 1)

n
.

Thus there is no profitable deviation in which banks Di do not all fail when a large shock hits a 
bank k ∈ Di \ {i}.

The only possible remaining gains from a deviation require reducing i and j ’s joint counter-
party failure costs when a large shock hits i. Suppose then that there are less than d∗ failures 
when a large shock hits assets of type i. We have just shown that if the deviation is profitable and 
j ∈ Di , all banks Di fail when a large shock hits assets of type j . But if φ′

ii = φ∗
ii = 1, then a 

large shock hitting j is equivalent to a large shock hitting i—in this case banks i and j are sym-
metric. Thus, for all profitable deviations in which φ′

ii = φ∗
ii = 1, banks Di must all fail when a 

large shock hits bank i. Hence, if φ′
ii = φ∗

ii = 1 there is no scope for i and j avoiding any of the 
joint counterparty failure costs they incur under (A∗, φ∗) in a profitable deviation by deviating 
to a network portfolio pair (A′, φ∗), and so all such deviations are unprofitable.

We can therefore restrict attention to φ′
ii < 1, which implies that there exists an asset type 

k �= i such that φ′
ik > 0. Then, by Lemma 3(i), if k ∈ Di then, following a small shock to k, 

banks Di \ {i, j} as well as i and/or j fail. This generates new expected joint losses for i and j
of at least

2ASβ(d∗ − 1)r(1 − q)

n
>

2ASd∗βrq

n
. (24)

The inequality just requires that q < (d∗ − 1)/(2d∗ − 1) which holds as q < 1/n2 < 1/3 ≤
(d∗ − 1)/(2d∗ − 1). Thus, the deviation is jointly unprofitable.

Suppose now φ′
ik > 0 and k /∈ Di . Then, by Lemma 6 there will be expected losses of at least

(2(d∗AS + (n − 2d∗)AW)βrq

n
≥ 2ASβrqd∗

n
.

Thus, the deviation is again jointly unprofitable.
CASE 2: Di �= Dj

By Lemma 4 parts (i) and (ii), banks i and j jointly incur at least the same losses in state of the 
world ωLk for k �= i following a deviation as they do under (A∗, φ∗). Thus, an upper bound on 
the expected joint losses that can be avoided by a deviation is (AS +AW)d∗βrq/n (the expected 
losses associated with a large shock hitting assets of type i). Moreover, by Lemma 4 part (i) if 
a large shock hits bank j , then banks Di \ {i} will fail and i and/or j will fail. Thus, if φ′

ii = 1, 
then again by symmetry of i and j , banks Di \ {i} will fail and i and/or j will fail following a 
large shock to assets of type i. This generates expected joint losses of (AS + AW)d∗βrq/n and 
removes any scope for the deviation being profitable.

We can therefore restrict attention to φ′
ii �= 1. Hence, there exists a k �= i such that φ′

ik > 0. 
By Lemma 3(i) if k ∈ Di then following a small shock to assets of type k at least banks Di \ {i}
fail. This generates expected losses for i and j of at least

(AS + AW)(d∗ − 1)βr(1 − q)

n
>

(AS + AW)d∗βrq

n
,

and so the deviation is again unprofitable.
If φ′

ik > 0 for k /∈ Di then by Lemma 6 there will be expected losses of at least

(2(d∗AS + (n − 2d∗)AW)βrq

n
≥ 2ASβrqd∗

n
.

Thus, the deviation is again jointly unprofitable.
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B.5. Proof of Lemma 3

Proof. Part (i) In state of the world ωSk , an upper bound on the values of banks can then be 
found by assuming no banks fail (or equivalently, setting β = 0). Thus, an upper bound on the 
value of a bank l such that l ∈ Dk and l �= i, j in state ωSk is

vl(A
′, φ′|ω = ωSk) ≤

∑
m

∑
h

A′
lmφmhph − c

= R − ASεS − ASφ′
ik

= v − ASφ′
ik < v. (25)

The first inequality holds because we are assuming no banks fail. The first equality is because 
R = R̄ − c, and under any feasible trade between i and j , A′

lm = A∗
lm for all m. The second 

equality holds by the definition of AS . The final inequality follows from φ′
ik > 0. Thus, all banks 

l such that l ∈ Dk and l �= i, j fail.
There are then two cases to consider. If j /∈ Di then we have already shown that all banks 

Di \ {i} fail. If j ∈ Di then an upper bound on the average value of banks i and j is

vi(A
′, φ′|ω = ωSk) + vj (A

′, φ′|ω = ωSk)

2
≤
∑
m

∑
h

(A′
im + A′

jm)φmhph

2
− c

= R − ASεS − ASφ′
ikεS

= v − ASφ′
ikεS < v

The first inequality holds because the minimum possible average portfolio maintenance costs are 
c and because we are assuming no banks fail. The first equality is because R = R̄ − c, and under 
any feasible trade between i and j , A′

il + A′
j l = A∗

il + A∗
j l for all l. Thus, either bank i fails, or 

bank j fails or both fail.
Part (ii)
In state of the world ωLk , an upper bound on the values of banks can then be found by assum-

ing no banks fail (or equivalently, setting β = 0). Thus, for a bank l ∈ Dk and l �= j

vl(A
′, φ′|ω = ωLk) ≤

∑
m

∑
h

A′
lmφmhph − c

= R − ASεL − AWφ′
ik

= v − AS(εL − εS) − AWφ′
ik < v (26)

The first equality is because R = R̄ − c and under any feasible trade between i and j , A′
lm = A∗

lm

for all m. The second equality holds by the definition of AS , and the final inequality holds because 
εL > εS and φ′

ik > 0. Thus, all banks in Dk except possibly j fail in state ωLk after a deviation 
to the network portfolio pair (A′, φ′).

There are now two cases to consider. First, suppose that j /∈ Dk . Then, by the above argument 
all d∗ banks in Dk fail in state of the world ωLk . As in a feasible bilateral trade A′

il + A′
j l =

A∗
il + A∗

j l for all l, an upper bound on the average value of banks i and j in state ωLk is then

vi(A
′, φ′|ω = ωLk) + vj (A

′, φ′|ω = ωLk)

2

≤
∑∑ (A′

im + A′
jm)φ′

mhph

2
−
∑ (A′

im + A′
jm)β

2
− c
m h m∈Dk
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= R − AWεL − d∗AWβ −
(

AW + AS

2

)
φ′

ikεL

= v −
(

AW + AS

2

)
φ′

ikεL < v.

Thus, i and/or j must fail.
Suppose now instead that j ∈ Dk . We then know for sure only that banks Dk \ {j} fail. Nev-

ertheless, bank i or j still fails in state ωLk . Now we have

vi(A
′, φ′|ω = ωLk) + vj (A

′, φ′|ω = ωLk)

2

≤
∑
m

∑
h

(A′
im + A′

jm)φ′
mhph

2
−
∑

m∈Dk\{j}

(A′
im + A′

jm)β

2
− c

= R −
(

AW + AS

2

)
εL −

(
AW + AS

2

)
(d∗ − 1)β

−
(

AW + AS

2

)
φ′

ikεL

= v − AS(εL − εS + (d∗ − 2)β)

2
−
(

AW + AS

2

)
(β + φ′

ikεL)

< v

The second equality uses the definitions of both AS and AW . Thus, again, i and/or j fail.
An upper bound on the value of a bank l /∈ Dk ∪ {i, j} in state ωLk is then

vl(A
′, φ′|ωLk) ≤ R − AWεL − AWd∗β − AWφ′

ikεL

= v − AWβ − AWφ′
ikεL < v. (27)

Thus, all banks l �= i, j fail, and at least one of i and j fails.
Part (iii)
From part (i) we have already seen that when a large shock hits asset of type k (for which 

φ′
ik > 0), and k ∈ Di \ {i}, all banks D \ {i} fail if j /∈ Di . As A′ = A∗ there is no trade, and so it 

is without loss of generality to let i’s trade partner be j /∈ Di , and we can apply the result from 
part (i).

Part (iv)
From part (ii) when a large shock hits assets of type k (for which φ′

ik > 0), and k /∈ Di \ {i}, 
all banks except possibly one of i and j fail. However, if A′ = A∗, then an upper bound on j ’s 
value, which also applies to i’s value, is

vi(A
∗, φ′|ωLk) ≤ R − AWεL − (AW(n − d∗) + AS(d∗ − 1))β − AWφ′

ikεL

= v − (AW(n − 2d∗) + AS(d∗ − 1))β − AWφ′
ikεL < v.

Thus, if A′ = A∗, then following the deviation to (A∗, φ′) with φ′
ik > 0, all banks will fail in state 

of the world ωLk . �
B.6. Proof of Lemma 4

Proof. Consider a large shock to bank k �= i. In this case, an upper bound on the value of a bank 
l such that l ∈ Dk and l �= i, j in state ωLk is
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vl(A
′, φ′|ωLk) ≤

∑
m

∑
h

A′
lmφmhph − c

= R − ASεL

= v − AS(εL − εS) < v. (28)

The first inequality is obtained by setting β = 0. The first equality holds because for any feasibly 
bilateral trade between i and j A′

lm = A∗
lm for all m. The final equality is from the definition of 

AS . Thus, banks other than i and j always fail when a large shock hits a bank in their cluster. 
Thus, for k /∈ {Di ∪ Dj } all banks Dk fail in state of the world ωLk . This proves part (i) for all 
cases except Di �= Dj and k ∈ Dj .

If j ∈ Di , an upper bound on the average value of banks i and j in state ωLk for k ∈ Di \ {i}
is

vi(A
′, φ′|ωLk) + vj (A

′, φ′|ωLk)

2
≤
∑
m

∑
h

(A′
im + A′

jm)φmhph

2
− c

= R − ASεL

= v − AS(εL − εS) < v. (29)

The reasoning underlying this series of equations is very similar to above. The only notable 
difference is that we no longer have A′

im = A∗
im for all m, but for all feasible bilateral trades 

between i and j we do have A′
im +A′

jm = A∗
im +A∗

jm for all m. Thus, if j ∈ Di and k ∈ Di \ {i}
at least one of i and j must fail in state of the world ωLk . Thus, there are at least d∗ − 1 failures, 
and these failures include i and/or j . This proves part (iii).

Now suppose that j /∈ Di . Then, an upper bound on the average value of banks i and j if large 
shock hits a bank k ∈ Di ∪ Dj for k �= i is

vi(A
′, φ′|ωLk) + vj (A

′, φ′|ωLk)

2

≤
∑
m

∑
h

(A′
im + A′

jm)φmhph

2
−

∑
l∈Dk\{i,j}

∑
m

(A′
im + A′

jm)β

2
− c

= R − ASεL − AS(d∗ − 1)β

2
+ R − AWεL − AW(d∗ − 1)β

2

= v − AW(d∗ − 2)β − AS(εL − εS) − (AS − AW)(d∗ − 1)β

2
< v

This series of equations follows a similar logic to that of the equations above, but uses the defi-
nitions of both AS and AW when moving to the last equality. As the average value of i and j is 
lower than v, at least one of i and j must again fail. Thus, there are at least d∗ failures, and these 
failures include i and/or j . This completes the proof of part (i) and also proves part (ii).

Finally, suppose that A′ = A∗ and consider a large shock to a bank k ∈ Di \ {i}. For all banks 
l ∈ Di

vl(A
∗, φ′|ωLk) ≤ R − ASεL

= v − AS(εL − εS) < v.

Thus, all banks in Di fail. �
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B.7. Proof of Lemma 5

Proof. In the state of the world in which no shock hits any asset types, under the network port-
folio pair (A∗, φ∗) bank i’s value is equal to R. A lower bound on bank i’s expected value under 
the network portfolio pair (A∗, φ∗) is therefore R − r
, where 
 is the (finite) maximum losses 
that bank i incurs in any state of the world.

For a network portfolio pair (A′, φ′) ∈ D an upper bound on the expected value of bank i is ∑
m A′

imR. Thus, a necessary condition for the deviation to the network portfolio pair (A′, φ′) ∈
D to increase i’s expected value (i.e., for vi((A

′, φ′)) > vi((A
∗, φ∗))) is that∑

m

A′
imR ≥ R − r
.

Fix any η > 0, then 
∑

m A′
im ≥ 1 − r
/R. Set r̄ = ηR/
. Note that r̄ > 0 because 
 is finite 

and R > 0. Thus, for r < r̄ we have 
∑

m A′
im ≥ 1 − η.

Repeating the exercise for j , we conclude that 
∑

m A′
jm ≥ 1 − η. Moreover, as the bilateral 

trade that results in A′ is feasible 
∑

m(A′
jm + A′

im) =∑m(A∗
jm + A∗

im) = 2. Hence, 
∑

m A′
jm =

2 −∑m A′
im and we have 2 −∑m A′

im ≥ 1 −η, which can be rearranged to give 
∑

m A′
im ≤ 1 +η. 

By a symmetric argument we also have 
∑

m A′
jm ≤ 1 + η. �

B.8. Proof of Lemma 6

Proof. As φ′
ik > 0 and k /∈ Di , by Lemma 3(ii) there will be at least n − 1 failures following a 

large shock to bank k, and only bank i or j might survive. If, instead, all n banks failed, there 
would be new expected joint counterparty losses of

2(d∗AS + (n − 2d∗)AW)βrq

n
. (30)

It only remains to show that for any profitable deviation with φ′
ik > 0 and k /∈ Di , then either (i) 

all n banks fail in state of the world ωLk or (ii) if only n − 1 banks fail in state of the world ωLk , 
then there is at least one new failure after a large shock to some asset l �= k.

We will first show that there is no jointly profitable deviation in which bank j survives in state 
of the world ωLk , without incurring sufficiently many new expected joint counterparty losses. For 
j to survive, j must have a value of vj (A

′, φ′|ωLk) ≥ v. However, by Lemma 5 and Lemma 3(i)

vj (A
′, φ′|ωLk) ≤ R(1 + η) − A′

jiφ
′
ikεL − A′

jkεL − (1 + η − A′
jj )β.

To show that this implies vj (A
′, φ′|ωLk) < v we will put a lower bound on j ’s losses in this 

state of the world by showing that, for the deviation to be jointly profitable, we must have A′
j l ≤

A∗
j l for all l ∈ Dj and 

∑
m∈Dl

A′
jm/d∗ ≤ AW for all l /∈ Dj ∪ {i} and either 

∑
m∈Di

A′
jm/d∗ ≤

AW or else A′
jm ≤ AW for all m ∈ Di \ {i}.

First, towards a contradiction, suppose that in a jointly profitable deviation A′
j l > A∗

j l , for 
l ∈ Dj \ {i}. Then, when a small shock hits assets of type l,

vj (A
′, φ′|ωSl) ≤ (1 + η)R − A∗

j lεS − (A′
j l − A∗

j l)εS

= v + ηR − (A′
j l − A∗

j l)εS

By Lemma 5, for r sufficiently small Rη < (A′
j l − A∗

j l)εS and, hence, vj (A
′, φ′|ωSl) < v. This 

means that j fails following a small shock to assets of type l. This generates additional ex-
pected new joint counterparty losses for i and j of at least (AS + AW)βr(1 − q)/n. By equation 
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(22) the deviation is profitable only if it reduces expected joint counterparty losses. The max-
imum possible reduction in expected joint counterparty losses from the trade is 2ASβrq/n <
2(AS + AW)βrq/n < (AS + AW)βr(1 − q)/n. Thus, the deviation is unprofitable, which is a 
contradiction. We must therefore have A′

j l ≤ A∗
j l for all l ∈ Dj \ {i}.

Now consider a large shock to assets of type l for l /∈ {Di ∪ Dj }. By Lemma 4 part (i) banks 
Dl fail. Thus,

vj (A
′, φ′|ωLl) ≤ (1 + η)R − A′

j lεL −
∑

m∈Dl

A′
jmβ

= v + ηR − (A′
j l − A∗

j l)εL −
∑

m∈Dl

(A′
jm − A∗

jm)β

Let 
 ∈ argmax
l /∈{Dj ∪Di }

∑
m∈Dl

A′
jm and let h ∈ argmax

l∈D


A′
j l . If 

∑
m∈D


A′
jm/d∗ > AW or∑

m∈D

A′

jm/d∗ = AW and A′
jh > AW , then vj (A

′, φ′|ωLh) < v. If h = k, this implies that j
fails in state ωLk , which is a contradiction. We can therefore restrict attention to h �= k. We have 
already seen that banks Dh and bank j fail in state ωLh. Further, all banks m /∈ Dh ∪ {i, j} then 
have values of at most

vm(A′, φ′|ωLh) ≤ R − AWεL − AW(d∗ + 1)β < v,

and so also fail. Thus, there are at least n −1 failures in state of the world ωLh, and this generates 
additional new counterparty losses for i and j of

2((d∗ − 1)AS + (n − d∗)AW)βrq

n
>

2(ASβrq)

n
.

Thus, the deviation is unprofitable. Hence, we must have that for all l /∈ {Di ∪ Dj }, A′
j l ≤ AW .

Now consider a large shock to assets of type h ∈ argmax
l∈Di\{i}

A′
j l . By Lemma 4 part (ii), all banks 

Di \ {i} fail, as do at least one of i and j . If bank i fails, then for j not to also fail we need that 
either 

∑
l∈Di

A′
j l/d

∗ ≤ AW , or if 
∑

l∈Di
A′

j l/d
∗ > AW then A′

jh ≤ AW . If j does fail, then by 
the same logic as above, there will be a cascade of failures in which all banks fail, exceeding the 
bound on expected new counterparty losses (30). Suppose then that j fails but not i in state ωLh. 
As j fails, along with banks Di \ {i}, all banks m ∈ Dj \ {j} have value

vm(A′, φ′|ωLl) ≤ R − AWεL − (AW(d∗ − 1) + AS)β < v,

and so also fails. But then for any bank h /∈ {Di ∪ Dj }
vh(A

′, φ′|ωLl) ≤ R − AWεL − AW(2d∗ − 1)β < v,

and so all these banks also fail.
Combining the above possibilities, we must have that bank i fails in state ωLk and either ∑
l∈Di

A′
j l/d

∗ ≤ AW , or if 
∑

l∈Di
A′

j l/d
∗ > AW then A′

jh ≤ AW .
Recall that for j not to fail when a large shock hits k we need

R(1 + η) − A′
jiφ

′
ikεL − A′

jkεL − (1 + η − A′
jj )β ≥ R − AWεL − d∗AWβ. (31)

By Lemma 5, η can be made arbitrarily small by requiring r to be sufficiently small. Thus, the 
only possibility for satisfying this inequality is if A′

jk < AW , while 
∑

l A
′
j l = 1 + η. However, 

as shown above, we must have A′ ≤ A∗ for any l ∈ Dj , or any l /∈ {Di ∪ Dj }. Moreover, if 
j l j l
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∑
l∈Di

A′
j l/d

∗ ≤ A∗
j l then there is no remaining scope for reducing A′

jk . Thus, we must have ∑
l∈Di

A′
j l/d

∗ > A∗
j l , which implies that A′

j l ≤ A∗
j l for all l ∈ Di \ {i}. Thus, the only possibility 

for reducing A′
jk by an amount x, while 

∑
l A

′
j l = 1 + η, is to set A′

ji = A∗
ji + η + x. The 

inequality becomes increasingly slack as x increases, so the best chance of satisfying it is to set 
x = A∗

jk . Even in this case, we will see that inequality (31) is violated. We then have

vj (A
′, φ′|ωLk) ≤ R(1 + η) − (A∗

ji + A∗
jk)φ

′
ikεL − (1 + η − AS)β (32)

≤ R(1 + η) − 2AWφ′
ikεL − (1 + η − AS)β (33)

Thus, as d∗AS + (n − d∗)AW = 1, for vj (A
′, φ′|ωLk) ≥ v we need

φ′
ik ≤ 1

2
− AS(d∗ − 1)β + (n − 2d∗)AWβ − (R − β)η

2AWεL

.

Thus, by Lemma 5, there exists a r̄ > 0 such that for all r < r̄ we require φ′
ik < 1/2.

To realize the potential gains from the deviation that can make it profitable, we need to avoid 
at least one bank in the set Di \ {i} failing when a large shock hits bank i. This requires that 
ASφ′

iiεL ≤ ASεS , which requires φ′
ii ≤ εS

εL
≤ 1/2.

If φ′
ii and φ′

ik are both less than half, then bank i must hold a third asset q . But by Lemma 4
part (ii), there are n − 1 failures when a large shock hits q , so we have exceeded the bound on 
new expected joint counterparty losses (30). Thus, there is no profitable deviation without either 
(i) n banks failing in state of the world ωLk or (ii) n − 1 banks failing in state of the world ωLk

and an extra failure after a large shock hits some other asset l �= k.
The argument showing there is no profitable deviation in which i does not fail when a large 

shock hits k follows the same steps, and the full details are omitted for brevity. First, to prevent 
a large cascade of at least n − 1 additional failures that would make the deviation unprofitable, 
banks i’s average dependence of a set of banks Dl �= Di cannot increase. Second, to prevent 
additional failures when a small shock hits a bank in Di that would make the deviation unprof-
itable, either i’s average dependency on banks Di must not increase, or else A′

il ≤ AS for all 
l ∈ Di \ {i}. If i’s average dependency on banks Di does not increase, then there is no scope for 
having A′

ik < AW , and thus i fails in state ωLk as claimed. If, instead, A′
il ≤ AS for all l ∈ Di \{i}, 

then the only way to have A′
ik < AW is to increase A′

ii . However, if this is done by enough to 
prevent i from failing in state ωLk , then at least banks Di \ {i} fail in state of the world ωLi , and 
the deviation is again jointly unprofitable. �
B.9. Proof of Proposition 3

Proof. Part i. One can easily verify that the network portfolio pair (A∗, φ∗) satisfies the con-
ditions of Lemma 1. Investment k in Lemma 1 corresponds to investment i in the this proof. 
Investment l in Lemma 1 is the investment corresponding to any bank in i’s cluster. Thus, by that 
Lemma, there exists a change in bank i’s portfolio that is profitable.

Part ii. Consider now a deviation from (A∗, φ∗) to (A′, φ∗), reached via a bilateral trade 
between i and j /∈ Di . Specifically, let A′

ik = AS + AW for all k ∈ Di , A′
ik = 0 for all k ∈ Dj , 

A′
jk = AS + AW for all k ∈ Dj , A′

jk = 0 for all k ∈ Di , and otherwise set A′
ik = A∗

ik and A′
jk =

A∗
jk . It is easy to verify that this trade is feasible.
We show now that this trade is strictly profitable for i. Strict profitability for j then follows 

by symmetry. First, observe that the value of all banks remains the same in states of the world 
ωSl and ωLl for l /∈ {Di ∪ Dj }.
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Next, observe that in states of the world ωSk and ωLk for k ∈ Di we have under the socially 
optimal network portfolio pair that πi(A

∗, φ∗|ωLk) = πi(A
∗, φ∗|ωSk) = 0. Thus, by limited lia-

bility, πi(A
′, φ∗|ωLk) ≥ πi(A

∗, φ∗|ωLk) and πi(A
′, φ∗|ωSk) ≥ πi(A

∗, φ∗|ωSk) = 0.
Moreover, under the socially optimal network portfolio pair, in state of the world ωLk for 

k ∈ Dj , πi(A
∗, φ∗|ωLk) = 0. This follows from the definition of AW . Thus, by limited liability, 

we must have πi(A
′, φ∗|ωLk) ≥ 0.

The only remaining states of the world to consider are ωSk for k ∈ Dj . Following the trade,

vj (A
′, φ∗|ωSk) ≤ vj (A

∗, φ∗|ωSk) − AWεS = v − AWεS < v

so bank j will now fail. This implies that for banks l ∈ Dj \ {j}
vl(A

′, φ∗|ωSk) ≤ vl(A
∗, φ∗|ωSk) − ASβ = v − ASβ < v,

and so the failure of j precipitates a cascade of failures in which all banks Dk = Dj fail. How-
ever, banks l /∈ Dj do not fail. To see that these banks survive, note that if the set of banks Dj , 
and only the banks Dj fail, we have

vl(A
′, φ∗|ωSk) ≥ R − AWεS − d∗AWβ = v + AW(εL − εS) > v,

where the first inequality is tight for all banks l /∈ Dj \ {i} and the second equality follows from 
the definition of AW .

Consider then the value of bank i in this state of the world. We have seen that in states of the 
world ωSk for k ∈ Dj , banks Dj fail given (A′, φ∗), while no banks failed for (A∗, φ∗). However, 
because of the trade, none of the losses from these failures are incident on i—that is, A′

ik = 0 for 
all k ∈ Dj . Thus, we have

vi(A
′, φ∗|ωSk) = R > R − AWεS = vi(A

∗, φ∗|ωSk).

Thus, the deviation from (A∗, φ∗) to (A′, φ∗) is strictly profitable for i, and by symmetry, strictly 
profitable for j . �
B.10. Proof of Remark 2

We have

E[πi]

=
∑
ω∈�

ψ(ω)

⎛
⎝∑

j∈N

Aij

(
pj (ω) − βIvj (ω)<v

)− v

⎞
⎠ (1 − I vi (ω)<v)

=
∑
j∈N

Aij

[
E
[
pj |vi ≥ v

]
Pr(vi ≥ v) − β

(
Pr(vj < v) −E

[
Ivj <vI vi<v

])]− vPr(vi ≥ v)

=
∑
j∈N

Aij

[
E
[
pj |vi ≥ v

]
Pr(vi ≥ v)

−β
(
Pr(vj < v)(1 − Pr(vi < v)) − Cov

[
Ivj <v, Ivi<v

])]
− vPr(vi ≥ v)

= Pr(vi ≥ v)

⎛
⎝∑Aij

[
E
[
pj |vi ≥ v

]− βPr(vj < v)
]− v

⎞
⎠

j∈N
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+ β
∑
j∈N

Aij Cov
[
Ivj <v, Ivi<v

]
. �

B.11. Proof of Lemma 1

We prove the result constructively by finding a unilateral portfolio deviation that is always 
profitable under the maintained assumptions of Lemma 1. Consider the deviation by bank i from 
portfolio φi to φ′

i in which i sets φ′
ij = φij for all j �= k, l, φ′

ik = 0 and φ′
il = φil + φik . Since the 

deviation is unilateral, we have φ′
j = φj for all j �= i. We let ωLk and ωSk denote the states of 

the world in which a large and small shock, respectively, hits assets of type k.
The equity value of all banks is weakly greater in states of the world ωLn and ωSn for n �=

l, m, and the state of the world in which no shock hits. Firm i pays the same or fewer portfolio 
maintenance costs, since i is no longer paying the maintenance cost on asset k. Thus, in these 
states, pj is weakly higher for all banks j , hence all banks’ equity values weakly increase.

Therefore, a sufficient condition for i’s equity value to increase is

E
[
πi

(
A,φ′)]> E [πi (A,φ)]

=⇒ (1 − q)
([

π
(
A,φ′|ωSk

)− π (A,φ|ωSk)
]+ [π (A,φ′|ωSl

)− π (A,φ|ωSl)
])

+q
([

π
(
A,φ′|ωLk

)− π (A,φ|ωLk)
]+ [π (A,φ′|ωLl

)− π (A,φ|ωLl)
])

> 0 (34)

that is, expected profits, conditional on large or small shocks hitting k or l, must increase after 
the deviation. We will calculate the value of each square bracketed term to show that inequality 
(34) does indeed have to be satisfied in our constructed trade.

We have

π
(
A,φ′|ωSk

)− π (A,φ|ωSk) ≥ AiiφikεS. (35)

After the deviation to φ′, bank i weakly lowers its portfolio maintenance costs, since it no longer 
pays a portfolio maintenance cost for holding asset k. Bank i’s market value increases directly 
by AiiφikεS , since bank i no longer has a portfolio share in asset k. Bank i’s market value in this 
state may increase further, since after the deviation, no banks that do not fail under φ fail under 
φ′ when a small shock hits k; but some banks that fail under φ may no longer fail under φ′. Thus, 
fewer failure costs are deducted from i’s market value in this state.

We have

π
(
A,φ′|ωSl

)− π (A,φ|ωSl) > − (1 − q)AiiφikεS. (36)

We have π
(
A,φ′|ωSl

) ≥ 0 by limited liability. We have π (A,φ|ωSl) < (1 − q)AiiφikεS ac-
cording to assumption (ii) of the Lemma.

We have

π
(
A,φ′|ωLk

)− π (A,φ|ωLk) ≥ 0. (37)

We know that π
(
A,φ′|ωLk

)
cannot be strictly lower than π (A,φ|ωLk), since i is less exposed to 

the large shock to investment type k after the deviation. But i could fail even after the deviation, 
in which case equation (37) equals zero.

We have

π
(
A,φ′|ωLl

)− π (A,φ|ωLl) > − (1 − q)AiiφikεS. (38)
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We have π
(
A,φ′|ωLl

) ≥ 0 by limited liability. We have π (A,φ|ωLl) < (1 − q)AiiφikεS ac-
cording to assumption (ii) of the Lemma.

Summing and rearranging inequalities (35)-(38) yields

(1 − q)
([

π
(
A,φ′|ωSk

)− π (A,φ|ωSk)
]+ [π (A,φ′|ωSl

)− π (A,φ|ωSl)
])

+q
([

π
(
A,φ′|ωLk

)− π (A,φ|ωLk)
]+ [π (A,φ′|ωLl

)− π (A,φ|ωLl)
])

> (1 − q) (AiiφikεS − (1 − q)AiiφikεS) − q (1 − q)AiiφikεS

= (1 − q) (AiiφikεS − AiiφikεS) = 0

so inequality (34) is satisfied and the constructed deviation is profitable.

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2020 .105157.
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