Dynamics of the Long Term Housing Yield: Evidence from Natural Experiments

Verónica Bäcker-Peral Princeton Jonathon Hazell LSE Atif Mian Princeton

May 2024 1st Cambridge Alumni in Macro Conference

Expected Long Term Housing Yield

 y^* is housing yield or rent-price ratio of housing expected in long run

$$y^* = \lim_{h \to \infty} E_t \frac{R_{t+h}}{P_{t+h}} = r^* + \zeta^* - g^*$$

▶ r^* is long run risk free rate, ζ^* is long run housing risk premium, g^* is long run capital gain

 \rightarrow y* contains information about market's expected long run equilibrium

How much did long term yields fall by in recent decades? Will the current rise in yields prove transitory?

Expected Long Term Housing Yield

 y^* is housing yield or rent-price ratio of housing expected in long run

$$y^* = \lim_{h \to \infty} E_t \frac{R_{t+h}}{P_{t+h}} = r^* + \zeta^* - g^*$$

 \blacktriangleright r^{*} is long run risk free rate, ζ^* is long run housing risk premium, g^{*} is long run capital gain

 \rightarrow y* contains information about market's expected long run equilibrium

How much did long term yields fall by in recent decades? Will the current rise in yields prove transitory?

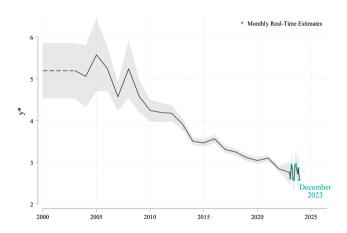
But y^* is hard to measure

- ► Discount rates affected by shorter term shocks (e.g monetary policy)
- ► Dividend of capital often hard to observe (e.g service flow of owner occupied housing)

Measuring Dynamics of y^* With Natural Experiments + Microdata

This paper: natural experiments + microdata to measure y^*

A natural experiment in the UK property market


- ▶ Long duration (> 70 year) leased properties quasi-randomly extend lease by 90+ years
- ▶ Put together new adminstrative data on 130,000+ lease extension experiments, 2000 onward
- ▶ Extension price change for same property: "differences out" shorter term shocks + service flow
- ightarrow Identifies y^* for UK property at very long horizon with few structural assumptions

Data and code made public, updated in real time (monthly)

Main Results: Big Fall Before 2022, Stable After

- y* for UK property market fell from 5.3% during 2000-2006 to 2.8% by 2022
- 2. y* stable during and after Pandemic Recession
- 3. Decline in y* is broad based beyond housing

Implication: $y > y^*$ as an indicator

95% confidence intervals shaded

The Long Term Housing Yield: Definition and Challenges

The Long Term Housing Yield: Definition and Challenges

▶ Price P_t of capital with dividend R_t :

$$P_t = R_t \int_0^\infty e^{-\int_0^S y(u) du} dS \quad y(u) \equiv r(u) + \zeta(u) - g(u)$$

where r is safe return, ζ is risk premium, g is dividend growth, y is yield

The Long Term Housing Yield: Definition and Challenges

▶ Price P_t of capital with dividend R_t :

$$P_t = R_t \int_0^\infty e^{-\int_0^S y(u) du} dS \quad y(u) \equiv r(u) + \zeta(u) - g(u)$$

where r is safe return, ζ is risk premium, g is dividend growth, y is yield

▶ The long term housing yield is long-run expected yield

$$y^* = r^* + \zeta^* - g^* \equiv \lim_{u \to \infty} r(u) + \zeta(u) - g(u) = \frac{R_{t+\infty}}{P_{t+\infty}}$$

 \rightarrow Equivalent: y^* is long run dividend-price ratio; or user cost of capital normalized by price

The Long Term Housing Yield: Definition and Challenges

▶ Price P_t of capital with dividend R_t :

$$P_t = R_t \int_0^\infty e^{-\int_0^S y(u) du} dS \quad y(u) \equiv r(u) + \zeta(u) - g(u)$$

where r is safe return, ζ is risk premium, g is dividend growth, y is yield

▶ The long term housing yield is long-run expected yield

$$y^* = r^* + \zeta^* - g^* \equiv \lim_{u \to \infty} r(u) + \zeta(u) - g(u) = \frac{R_{t+\infty}}{P_{t+\infty}} \neq \frac{R_t}{P_t}, \quad \text{``naive estimate''}$$

 \rightarrow Equivalent: y^* is long run dividend-price ratio; or user cost of capital normalized by price

- ► **Two challenges** in estimating *y**:
 - 1. Dividend of capital R_t often hard to observe (e.g. service flow of owner occupied housing)
 - 2. Shocks to shorter end of yield curve also affects P_t (e.g monetary policy)

Data and Lease Extensions

Data

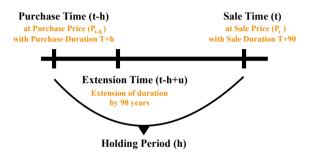
- "Leasehold" = long duration lease issued by owner of property ("freeholder"), typically > 70 years
 - ► Originally designed to give liquidity to cash poor aristocrats
 - $\blacktriangleright~97.5\%$ of apartments, 7.3% of houses are leaseholds, lease can be bought and sold

Lease extensions:

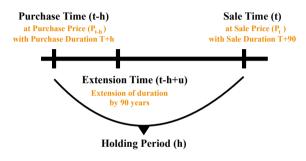
- ► Leaseholder entitled to extend lease by 90 years by paying freeholder a one-off negotiated payment
- ▶ If no agreement: payment is present value of lease extension assessed by tribunal with market prices

Data

- "Leasehold" = long duration lease issued by owner of property ("freeholder"), typically > 70 years
 - ▶ Originally designed to give liquidity to cash poor aristocrats
 - $\blacktriangleright~97.5\%$ of apartments, 7.3% of houses are leaseholds, lease can be bought and sold

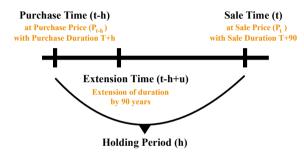

Lease extensions:

- ► Leaseholder entitled to extend lease by 90 years by paying freeholder a one-off negotiated payment
- ▶ If no agreement: payment is present value of lease extension assessed by tribunal with market prices


Main datasets:

- 1. Land Registry Sales: all residential sales in England and Wales, 1995-present, public data
- 2. Land Registry Leases: all lease terms for leaseholds, public data
- 3. Land Registry Extensions: new data on date and size of extensions, private data
 - NB: lease extension payments not measured
 - ▶ We have made extension data set publicly available on our website, for replication + real time analysis
- 4. Rightmove / Zoopla: hedonics (e.g. # bedrooms, # bathrooms, # living rooms, floor area)

Lease Extensions: Example and Sample Construction


Lease Extensions: Example and Sample Construction

Main Sample:

- ► Lease extensions with transaction both before and after extension
- Exclude "flippers" who buy + extend + sell within a year
- Focus on 90 year lease extensions (typical length) Extension Amount Histogram

Lease Extensions: Example and Sample Construction

Main Sample:

- ► Lease extensions with transaction both before and after extension
- Exclude "flippers" who buy + extend + sell within a year
- Focus on 90 year lease extensions (typical length) Extension Amount Histogram

Summary statistics:

- ► 40,633 lease extensions for 90 years (122,224 lease extensions total)
- ► Median duration before extension is large ≈ 70 years
- Median holding period 10 years, time to extension 7 years

Using Lease Extensions to Estimate y^*

Empirical Methodology I

Price of **leasehold** P_t^T with T years until expiry

$$P_t^T = R_t \int_0^T e^{-\int_0^S y(s) ds} dS$$

In paper: estimate option value of lease extension with discontinuity based estimator, results unchanged

Empirical Methodology II

Price change after lease extension difference-in-difference:

$$\Delta_{it} \equiv \underbrace{\left[\log P_{it}^{T+90} - \log P_{i,t-h}^{T+h}\right]}_{\text{price growth after extension}} - \underbrace{\left[\log P_{jt}^{T} - \log P_{j,t-h}^{T+h}\right]}_{\text{log } P_{jt}^{T} - \log P_{j,t-h}^{T+h}\right]}$$

Empirical Methodology II

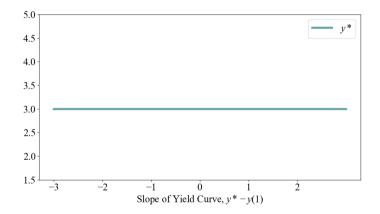
Price change after lease extension difference-in-difference:

$$\Delta_{it} \equiv \underbrace{\left[\log P_{it}^{T+90} - \log P_{i,t-h}^{T+h}\right]}_{\log \left(\int_{0}^{T+90} e^{-\int_{0}^{S} y(s)ds}ds\right) - \log \left(\int_{0}^{T} e^{-\int_{0}^{S} y(s)ds}ds\right) + \underbrace{\Delta_{t,t-h}\left(\log R_{it} - \log R_{jt}\right)}_{\text{service flow growth extender vs. control}}$$

Identification: service flow growth of extender same as suitably chosen control group ("parallel trends")

Empirical Methodology II

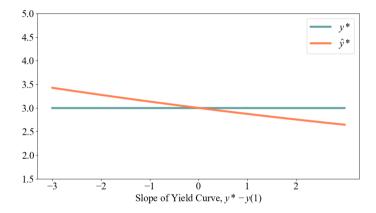
Price change after lease extension difference-in-difference:


$$\begin{split} & \Delta_{it} \equiv \overbrace{\left[\log P_{it}^{T+90} - \log P_{i,t-h}^{T+h}\right]}^{\text{price growth after extension}} - \overbrace{\left[\log P_{jt}^{T} - \log P_{j,t-h}^{T+h}\right]}^{\text{non-extending control}} \\ & = \log\left(\int_{0}^{T+90} e^{-\int_{0}^{S} y(s) ds} ds\right) - \log\left(\int_{0}^{T} e^{-\int_{0}^{S} y(s) ds} ds\right) + \underbrace{\Delta_{t,t-h}\left(\log R_{it} - \log R_{jt}\right)}_{\text{service flow growth extender vs. control}} \\ & = \log\left(1 - e^{-y_{t}^{*}(T_{it}+90)}\right) - \log\left(1 - e^{-y_{t}^{*}T_{it}}\right) \end{split}$$

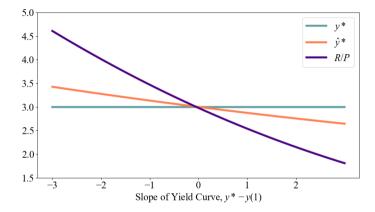
Identification: service flow growth of extender same as suitably chosen control group ("parallel trends")

Advantages of estimator—w/ minimal structural assumptions

- $\checkmark\,$ Differences out (unobservable) service flow of housing incl. taxes + depreciation
- ✓ Differences out shorter term rates: when **T** is large, y^* is identified from long duration cashflows (despite parametrization of constant y^*)


Estimator "Differences Out" Shorter Term Yields (Numerical Result)

▶ Simulate panel of leases: flat yield curve at long end (T > 50), sloped yield at short end (T < 50)


• Apply estimator \hat{y}^* as slope of yield curve $y^* - y(1)$ varies, hold fixed y^*

Estimator "Differences Out" Shorter Term Yields (Numerical Result)

- ▶ Simulate panel of leases: flat yield curve at long end (T > 50), sloped yield at short end (T < 50)
- ▶ Estimator has small bias for large variation in slope
 - Intuition: duration at extension is large $\rightarrow y^*$ is identified from long duration cashflows

Estimator "Differences Out" Shorter Term Yields (Numerical Result)

- ▶ Simulate panel of leases: flat yield curve at long end (T > 50), sloped yield at short end (T < 50)
- ▶ Estimator has small bias for large variation in slope
- "Naive estimator" R_t/P_t has large bias when yield curve sloped

Empirical Methodology III

Price change after lease extension difference-in-difference:

$$riangle_{it} = \log\left(1-e^{-y_t^*\left(\,{{T}_{it}}+90
ight)}
ight) - \log\left(1-e^{-y_t^*\,{{T}_{it}}}
ight)$$

Control: repeat sales index of non-extenders within d km and 5 years of extender duration T_{it}

- \blacktriangleright d is smallest possible distance, typically under 5km
- ▶ Robustness: residualize prices by hedonic characteristics

Empirical Methodology III

Price change after lease extension difference-in-difference:

$$riangle_{it} = \log\left(1-e^{-y_t^*\left(extsf{T}_{it}+90
ight)}
ight) - \log\left(1-e^{-y_t^* extsf{T}_{it}}
ight)$$

Control: repeat sales index of non-extenders within d km and 5 years of extender duration T_{it}

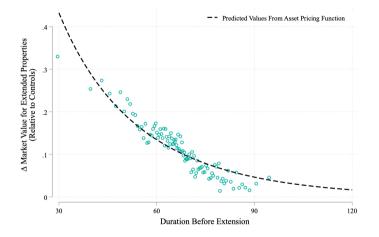
- \blacktriangleright d is smallest possible distance, typically under 5km
- ▶ Robustness: residualize prices by hedonic characteristics

Validating control group + parallel trends:


- ✓ Balance test: hedonics vs. treatment Balance Test
- ✓ Placebo: growth in (market) rents + hedonics vs. treatment Hedonics Rent Growth Long-Run Rent Growth
- $\checkmark\,$ Lack of pre-trends: growth in prices before extension vs. treatment
- \checkmark Stable coefficients w/ controls

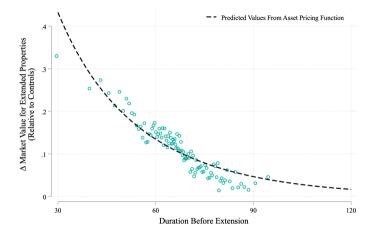
Nonlinear least squares: estimate y_t^* given (Δ_{it}, T_{it}) from lease extensions

• Time varying estimator of y_t^* is feasible


Estimates of Level of y^*

Event Study of Lease Extension (Event Study Plot Over Time & Duration) (Lease Term Distribution

Price change from lease extension helps to identify y^*


Duration Before Extension Predicts Price Change After Extension

Binscatter with 100 bins, 90 year extensions

Model prediction: price gain from extension decreasing in duration before extension (helps to identify y^*)

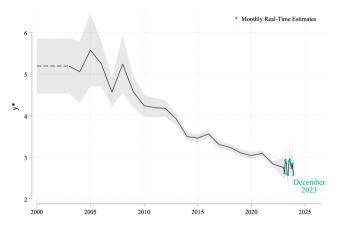
Duration Before Extension Predicts Price Change After Extension


Binscatter with 100 bins, 90 year extensions

Estimates of y*

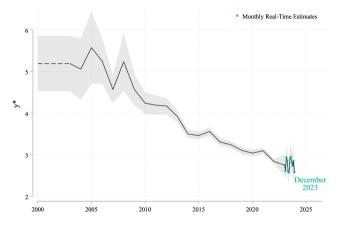
Average estimate: $y^* = 3.5\%$ (y* Estimates

Main Results: Dynamics of y^*


Result #1: Trend Dynamics Of y^* (Yield Curve Dynamics) (Timeseries by Extension Amount

95% confidence intervals shaded

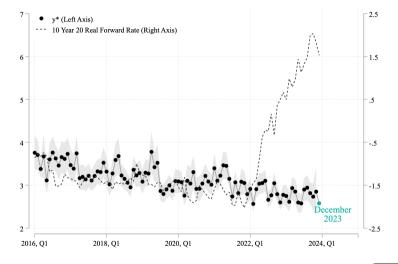
Fall of y* from 5.3% to 2.8%, near doubling of long-term price-rent ratio


Result #1: Trend Dynamics Of y^* (Yield Curve Dynamics) (Timeseries by Extension Amount

95% confidence intervals shaded

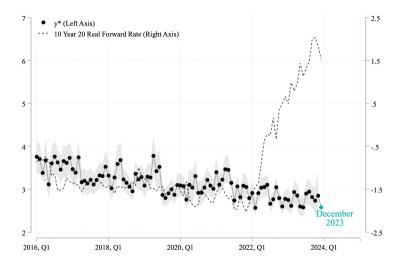
SEs \approx order of magnitude lower than r^* estimate of Holston, Laubach & Williams (HLW Estimates

Result #1: Trend Dynamics Of y^* (Yield Curve Dynamics) (Timeseries by Extension Amount

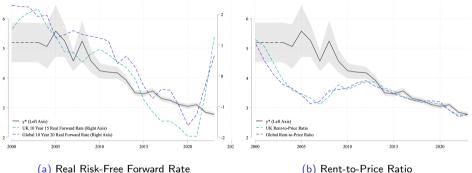


95% confidence intervals shaded

Here: decline in y^* for housing


▶ Previous work shows decline in government bond yields

Result #2: Real Time Dynamics of y^*


3-6 month lag in real-time estimate of y^* due to closing period Histogram

Result #2: Real Time Dynamics of y^*

real-time data made public \approx 900 lease extensions per month

Result #3: Macroeconomic implications of y^*

- (b) Rent-to-Price Ratio
- \blacktriangleright Decline in y^* reflects that of other asset yields at low frequencies
- \blacktriangleright Deviations of y from y^{*} suggest transitory movements in yields

Conclusion

Conclusion

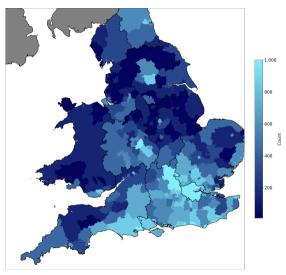
Natural experiment to estimate long term housing yield

- 1. y^* for UK property market fell from 5.3% during 2000-2006 to 2.8% by 2022
- 2. y^* stable during and after Pandemic Recession
- 3. Decline in y^* broad based beyond UK housing

Key advantages:

- 1. Precision, even at monthly frequency
- 2. Addresses model misspecification concerns
- 3. Real time estimates, data made publicly accessible

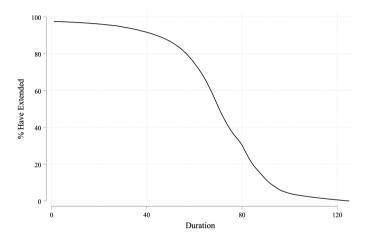
- 1. **Rightmove Data**: Hedonics including # bedrooms, # bathrooms, # living rooms, floor area, property age, parking, heating type, condition, rental rates
- 2. Zoopla Data: Hedonics including # bedrooms, # bathrooms, # receptions, # floors, rental rates
- 3. HMCTS Tribunals Data: All Residential Property tribunal decisions on extension cases.


◀ Data & Lease Extensions

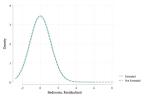
Ground Rents

- 1. Ground rents are typically a negligible amount of the property value, with a median price of $\pounds 10$ per annum, according to English Housing Survey
- 2. Ground rents are present for leases of all lengths, including very long 700+ year leases
- 3. To collect ground rents, freeholders must make a specific written request to the leaseholder, so many freeholders find it cheaper not to collect ground rents

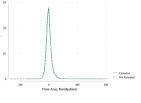
▲ Data & Lease Extensions


Lease Extension Heat Map

Extension Amount Distribution

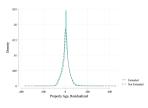

Percent 0 -Extension Amount

Cumulative Hazard Rate

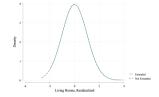


Estimator

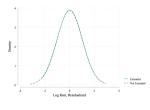
Hedonics Balance Test



(a) Bedrooms



for a state of the state of the


(b) Bathrooms

(e) Age

(c) Living Rooms

(f) Log(Rent)

(d) Floor Area

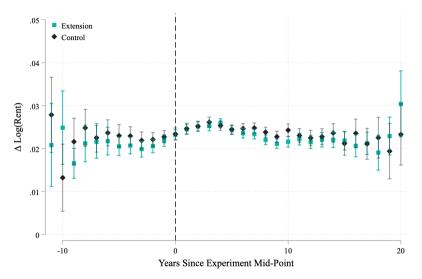
Hedonics Placebo Test

	(1)	(2)	(3)	(4)	(5)
	Renovation Rate	Δ Bedrooms	Δ Bathrooms	Δ Living Rooms	Δ Floor Area
Extension	-0.001	-0.003	0.000	-0.001	-0.057
	(0.001)	(0.002)	(0.000)	(0.000)	(0.035)
Experiment FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Control Mean	.091	.043	.002	.001	.28
Ν	148,786	41,760	31,734	30,630	33,122
N. Experiment	74,393	20,880	15,867	15,315	16,561

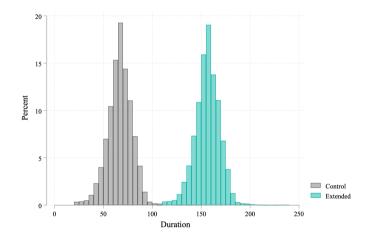
Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Main Estimator


Rent Growth Placebo Test

	$\Delta \log(Rent)$		
	(1)	(2)	(3)
Extension	0.0010	-0.0010	0.0002
	(0.0007)	(0.0006)	(0.0007)
$Experiment \times Rent Years FE$	\checkmark		\checkmark
Experiment FE		\checkmark	
Annualized		\checkmark	
RSI			\checkmark
Ν	3,874,527	35,474	72,558
N. Experiment	16,131	17,737	18,447

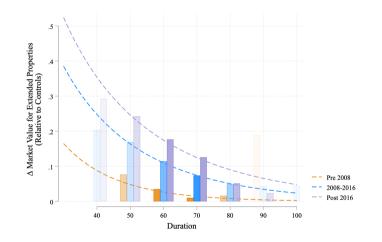

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Long-Run Rent Growth

Lease Term Distribution

Estimating The Long Term Housing Yield on UK Property


	Constant y^*	Flexible y*				Constant y*	
	(1)	(2)	(3)	(4)	(5)	(6)	
	k = 90	T = 50	T = 60	T = 70	T = 80	$k \ge 700$	
у* 	3.47***	3.43	3.46	3.49	3.52	3.50***	
	(0.023)					(0.020)	
N	41,885					52,615	
t-stat (700+ vs. 90)						1.11	

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

▲ Binscatter

Dynamics Of The Long-Term Housing Yield

Measuring the Option Value of Lease Extension

Cost of extending a lease with T years until expiry:

$$\kappa_{it}^{T} = \begin{cases} \min\left\{ RV_{it}^{T} + \gamma R_{it}, MV_{it}^{T} \right\} & T \ge 80\\ \min\left\{ \frac{RV_{it}^{T} + MV_{it}^{T}}{2} + \gamma R_{it}, MV_{it}^{T} \right\} & T < 80 \end{cases}$$

► Reversion Value: $RV_t^T = \frac{R_{it}}{r_{RV}} \left(e^{-r_{RV}T} - e^{-r_{RV}(T+90)} \right)$ uses court discount rate $r_{RV} = 5\%$

- ► Marriage/Market Value: $MV_{it}^T = P_{it}^{T+90} P_{it}^T$
- ► Additional Costs: γR_{it}

Measuring the Option Value of Lease Extension

Cost of extending a lease with T years until expiry:

$$\kappa_{it}^{T} = \begin{cases} \min\left\{ RV_{it}^{T} + \gamma R_{it}, MV_{it}^{T} \right\} & T \ge 80\\ \min\left\{ \frac{RV_{it}^{T} + MV_{it}^{T}}{2} + \gamma R_{it}, MV_{it}^{T} \right\} & T < 80 \end{cases}$$

► Reversion Value:
$$RV_t^T = \frac{R_{it}}{r_{RV}} \left(e^{-r_{RV}T} - e^{-r_{RV}(T+90)} \right)$$
 uses court discount rate $r_{RV} = 5\%$

• Marriage/Market Value:
$$MV_{it}^{T} = P_{it}^{T+90} - P_{it}^{T}$$

► Additional Costs: γR_{it}

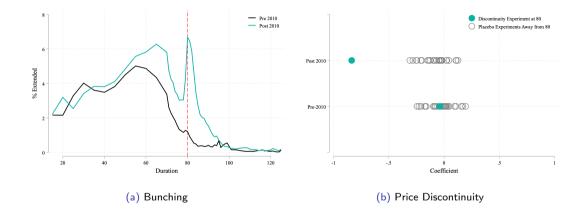
Define $\alpha_t^T \equiv \kappa_{it}^T / MV_{it}^T \leq 1$: share of the extension value that is lost by the leaseholder. We say that there is positive option value if $\alpha_t^T < 1$.

Measuring the Option Value of Lease Extension

Cost of extending a lease with T years until expiry:

$$\kappa_{it}^{T} = \begin{cases} \min\left\{ RV_{it}^{T} + \gamma R_{it}, MV_{it}^{T} \right\} & T \ge 80\\ \min\left\{ \frac{RV_{it}^{T} + MV_{it}^{T}}{2} + \gamma R_{it}, MV_{it}^{T} \right\} & T < 80 \end{cases}$$

► Reversion Value:
$$RV_t^T = \frac{R_{it}}{r_{RV}} \left(e^{-r_{RV}T} - e^{-r_{RV}(T+90)} \right)$$
 uses court discount rate $r_{RV} = 5\%$


• Marriage/Market Value:
$$MV_{it}^{T} = P_{it}^{T+90} - P_{it}^{T}$$

► Additional Costs: γR_{it}

Define $\alpha_t^T \equiv \kappa_{it}^T / MV_{it}^T \leq 1$: share of the extension value that is lost by the leaseholder. We say that there is positive option value if $\alpha_t^T < 1$.

Theorem: When there is positive option value, the price of a leasehold will discontinuously fall at T = 80.

Discontinuity Based Test for Option Value

► Evidence of a discontinuity in the post-2010 period.

Difference-in-Differences Estimator of Option Value

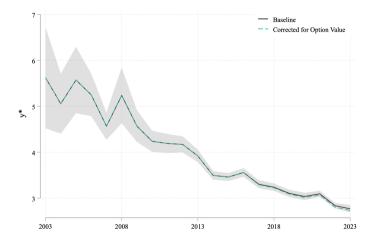
	(1)	(2)
<i>y</i> *	4.81***	3.25***
	(0.09)	(0.01)
α_t^H	1.00***	0.53***
-	(0.01)	(0.06)
α_t^L	1.00***	1.00***
-	(0.00)	(0.02)
Period	Pre 2010	Post 2010
Ν	18,064	106,478

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

$$\Delta_{it}^{T} = \log\left(1 - e^{-y_{t}^{*}(T_{it}+90)}\right) - \log\left(\left(1 - e^{-y_{t}^{*}T}\right) + \left[\Pi_{Tt}^{H}\left(1 - \alpha_{t}^{H}\right)\right] + \left[\Pi_{Tt}^{L}\left(1 - \alpha_{t}^{L}\right)\right]e^{-y_{t}^{*}T_{it}}\left(1 - e^{-y_{t}^{*}90}\right)\right)$$
(1)

Difference-in-Differences Estimator of Option Value


	(1)	(2)
<i>y</i> *	4.81***	3.25***
	(0.09)	(0.01)
α_t^H	1.00***	0.53***
-	(0.01)	(0.06)
α_t^L	1.00***	1.00***
-	(0.00)	(0.02)
Period	Pre 2010	Post 2010
Ν	18,064	106,478

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

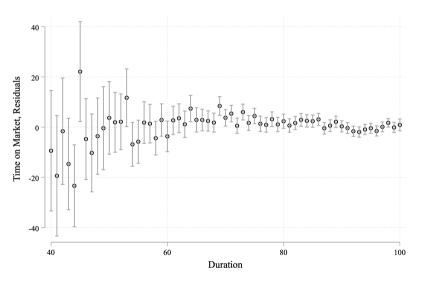
$$\Delta_{it}^{T} = \log\left(1 - e^{-y_{t}^{*}(T_{it}+90)}\right) - \log\left(\left(1 - e^{-y_{t}^{*}T}\right) + \left[\Pi_{Tt}^{H}\left(1 - \alpha_{t}^{H}\right)\right] + \left[\Pi_{Tt}^{L}\left(1 - \alpha_{t}^{L}\right)\right]e^{-y_{t}^{*}T_{it}}\left(1 - e^{-y_{t}^{*}90}\right)\right)$$
(1)

Option Value Correction

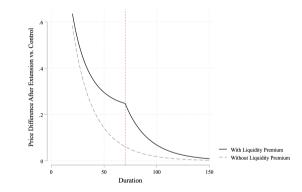
Partial Holdup Above 80 Has Negligible Effect on Estimates

Bunching Estimator A Robustne

Liquidity Premium

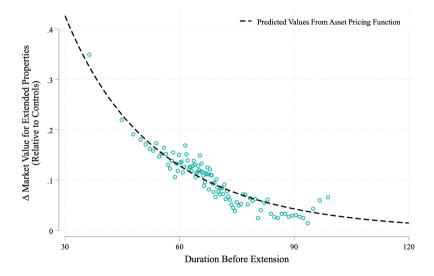

	Less Than 50 Years	50-60 Years	60-70 Years	70-80 Years	80-99 Years	100+ Years	Total
Mortgage Length	22.1	22.1	23.9	23.0	23.9	23.1	23.3
	(0.6)	(0.5)	(0.5)	(0.3)	(0.2)	(0.1)	(0.1)
LTV	76.3	80.8	81.4	77.7	73.3	76.5	76.2
	(3.3)	(2.6)	(1.8)	(1.7)	(1.0)	(0.6)	(0.5)
% Have Mortgage	59.9	60.4	62.1	58.1	63.9	55.6	58.2
	(2.4)	(2.4)	(1.6)	(1.4)	(0.8)	(0.5)	(0.4)
% Adjustable Rate	24.2	40.0	38.3	32.8	25.3	31.0	30.2
	(5.3)	(5.2)	(4.1)	(3.4)	(1.5)	(1.0)	(0.8)
N	18,292						

▶ Short and long duration leaseholds have relatively similar mortgage usage rates and conditions:


mean reported; standard error of mean in parentheses

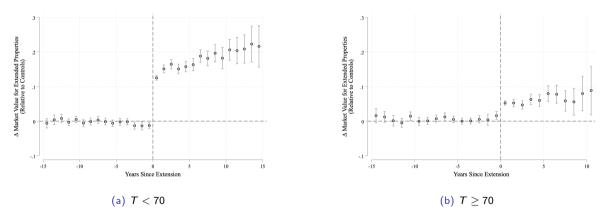
Liquidity Premium

▶ Time on market is similar for leaseholds of varying durations, and is shorter for very short leaseholds


Liquidity Premium


- If there were a liquidity premium at a particular cutoff, we would see a kink in the data.
- We can test for this directly using NLLS — the data rejects a liquidity premium at 70, which is the most prominent cutoff date for several major banks such as Barclays.

Estimates of Long-Term Housing rates


Longer Extensions

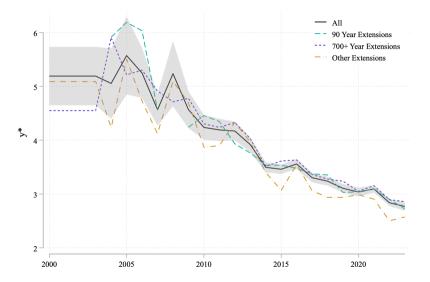
Event Study Plot Over Time

Event Study Plot Over Duration

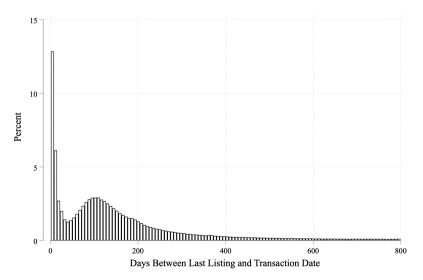
Cross-Sectional Variation in y*, Risk-Premium

How does the housing risk premium, ζ , vary in the cross-section?

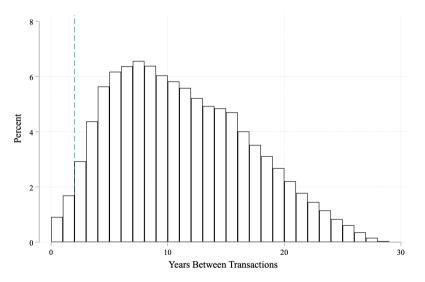
- ▶ One measure of housing risk: the relationship between house price and consumption growth
- ▶ Proxy consumption growth with GDP growth

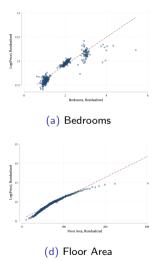

$$\Delta_{t,t-h} \log(\mathsf{Price}_{ijt}) = lpha + eta_j \Delta_{t,t-h} \log(\mathsf{GDP}_t) + \epsilon_{i,j,t,t-h}$$

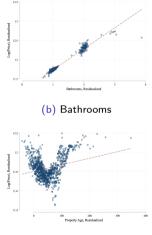
- Estimate β_j for each Local Authority j
- Estimated at the property-level (i) using change in price from t h to t

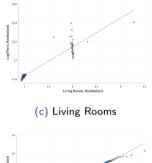

Summary statistics:

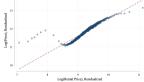
	Mean	SD
β_j	1.15	.38
Refusal Rate	.27	.09
Share developed	.38	.28


Timeseries by Extension Amount


Time Elapsed Between Rightmove Listing and Transaction Date




Holding Period Histogram



Log(Price) and Hedonic Characteristics Binscatters

(f) Log(Rent)

Tribunal Decision Example

Determination of the premium payable for an extended lease of 66 Brownlow Road, London N11 2BS

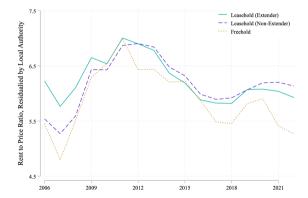
Valuation date: 21 January 2019 - Unexpired term 64.92 years

Diminution in Value of Freehold Interest

Capitalization of ground rent pa YP for 64.92 years @ 7%	£45 14.109	£635
Reversion to F/H value with VP Deferred 64.92 years @ 5%	£393,900 0.0421	<u>£16,583</u> £17,218
Less value of F/H after grant of new lease Deferred 154.92 years @5%	£393,900 0.000522	£205
A		£17,013

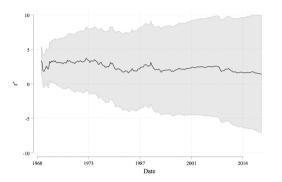
Marriage Value After arant of new lease

Value of extended lease Plus freehold value	£390,000 £205	£390,205	
Before grant of new lease Value of existing lease @ 83.88% Plus freehold value	£328,500 £17,218	£345,718	
		£44,487	


50% share to Freeholder

£22,243 £39,256

Premium Payable Say £39,250


Leaseholder Representativeness

	Freehold	Leasehold
Income	29,628.73	25,653.20
	(52.95)	(138.48)
Age	53.95	51.49
	(0.03)	(0.10)
% Have Mortgage	54.82	59.07
	(0.10)	(0.28)
LTV	72.17	76.16
	(0.14)	(0.39)
N	305,135	

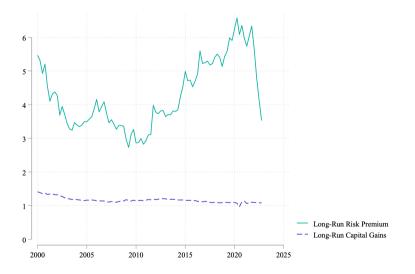
Estimates of Long-Term Housing rates

Holston, Laubach & Williams r^*

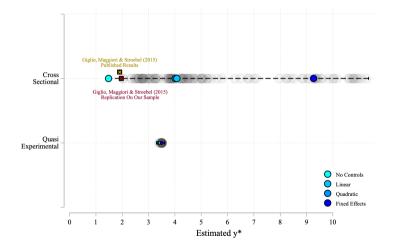
0 -50 -100 -1960 -1973 -1987 -201 -201 -2014 -2028

100

50


۰.,

(a) Pre COVID-19 Pandemic


Result # 1

Risk Premia and Capital Gains for Housing

No trend in long run risk premia or capital gains Return

Robustness to Unobserved Heterogeneity: Stability of Estimates

Estimates of y^* from quasi-experimental approach are insensitive to observed heterogeneity

► Estimates of y* from cross-sectional approach are more sensitive (cf. Giglio, Maggiori & Stroebel 2015)