THE SLOPE OF THE PHILLIPS CURVE: EVIDENCE FROM U.S. STATES

Jonathon Hazell¹ Juan Herreño² Emi Nakamura³ Jón Steinsson³

¹Princeton & LSE

²Columbia & UCSD

³UC Berkeley

April 2021

New Keynesian formalization:

$$\pi_t = \beta E_t \pi_{t+1} - \kappa (u_t - u_t^n) + \nu_t$$

Drivers of inflation:

- Expected inflation: $E_t \pi_{t+1}$
- Measure of "output gap": $u_t u_t^n$
- Cost-push shocks: ν_t

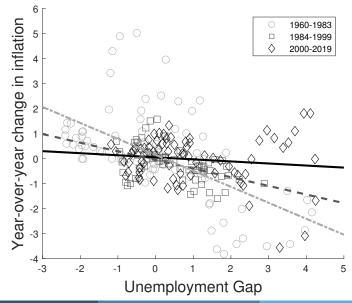
Object of interest: Slope coefficient κ

• How much does an increase in "demand" affect inflation

CONVENTIONAL WISDOM

- Volcker disinflation:
 - $\bullet~$ Tight policy $\rightarrow~$ high unemployment $\rightarrow~$ lower inflation
 - Suggests the Phillips curve is steep
- Since 1990:
 - Muted response of inflation to unemployment
 - Great Recession: missing disinflation
 - Late 2010s and 1990s: missing rise in inflation
- Phillips curve is getting flatter or hibernating (or dead)
 - Perhaps an important flaw in the Keynesian model

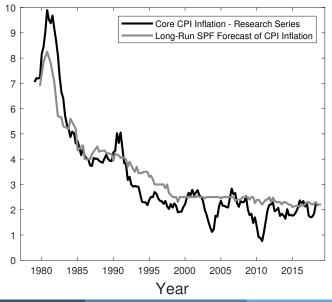
- Assume adaptive expectations: $\beta E_t \pi_{t+1} = \pi_{t-1}$
- In this case,


$$\pi_t = \beta E_t \pi_{t+1} - \kappa (u_t - u_t^n) + \nu_t$$

becomes

$$\Delta \pi_t = -\kappa (u_t - u_t^n) + \nu_t,$$

- Stock and Watson (2019):
 - $\Delta \pi_t$: Annual change in 12-month core PCE inflation
 - $u_t u_t^n$: CBO unemployment gap
 - Refer to κ as "Phillips correlation"


FLATTENING PHILLIPS CURVE

ALTERNATIVE EXPLANATION

- Volcker disinflation:
 - Sharp regime shift
 - Rapid fall in long-run inflation expectations
 - Rapid fall in inflation
- Since 1990:
 - Long-run inflation expectations have become anchored
 - Consequently, inflation has become more stable
- Apparent "flattening" of Phillips curve due to anchoring of inflationary expectations (Bernanke, 2007; Mishkin, 2007)

LONG-RUN INFLATION EXPECTATIONS

Hazell, Herreño, Nakamura, Steinsson

Phillips Curve

IDENTIFICATION CHALLENGES

- 1. Inflation expectations may covary with unemployment
 - For example: Imperfectly credible regime change
 - Literature seeks to control for inflation expectations
 - Results sensitive to details / weak instruments (Mavroeidis et al. 2014)
- 2. Supply shocks $(u_t^n \text{ and } \nu_t)$
 - Lead to positive comovement between inflation and unemployment (stagflation)
 - Good monetary policy compounds with by counteracting demand variation, leaving only supply variation (Fitzgerald-Nicolini, 2014, McLeay-Tenreyro 2019)

- Recent literature estimates "regional Phillips curves"
 - Fitzgerald-Nicolini 14; Kiley 15; Babb-Detmeister 17; McLeay-Tenreyro 19; Hooper-Mishkin-Sufi 19; Fitzgerald-Jones-Kulish-Nicolini 20; Beraja-Hurst-Ospina 19 (wages)
- Emphasizes advantages regarding endogeneity of unemployment
 - Monetary policy cannot eliminate regional demand shocks
- We seek to contribute to this literature in several ways

- Show that regional estimation eliminates shifting $E_t \pi_{t+\infty}$
 - Absorbed by time fixed effects in panel specification
- Is slope of regional Phillips curve same as aggregate Phillips curve?
 - Provide conditions under which it is (for non-tradeables)
 - Crucial to focus on non-tradeable inflation to avoid downward bias!
- Construct new state-level price indexes back to 1978
 - Based on micro price data underlying US CPI
 - Avoid imputation / match state-level unemployment
- New tradeable demand spillover instrument

- Slope of Phillips curve is small and has always been small (at least since 1978)
- No missing disinflation or missing reinflation since 1990
- Volcker disinflation:
 - Mostly due to fall in long-run expectations
 - Only 2 percentage points due directly to high unemployment
- Flattening of the Phillips curve not quantitatively important (because initial slope was small)

The Power and Problem of Expected Inflation Let's understand better the central role of long-run inflation expectations:

$$\pi_t = \beta E_t \pi_{t+1} - \kappa (u_t - u_t^n) + \nu_t$$

Solve forward:

$$\pi_t = -\kappa E_t \sum_{j=0}^{\infty} \beta^j u_{t+j} + \omega_t$$

where $\omega_t = E_t \sum_{j=0}^{\infty} \beta^j (\kappa u_{t+j}^n + \nu_{t+j}).$

Current inflation determined by current and future unemployment

THE ROLE OF THE LONG-RUN INFLATION TARGET

• Useful to decompose u_{t+i} into permanent and transitory component:

$$\pi_t = -\kappa E_t \sum_{j=0}^{\infty} \beta^j u_{t+j} + \omega_t$$

becomes

$$\pi_t = -\kappa E_t \sum_{j=0}^{\infty} \beta^j \tilde{u}_{t+j} + \frac{\kappa}{1-\beta} E_t u_{t+\infty} + \omega_t$$

where $\tilde{u}_t \equiv u_t - E_t u_{t+\infty}$

• Since $\frac{\kappa}{1-\beta}E_t u_{t+\infty} = E_t \pi_{t+\infty}$, we have

$$\pi_t = -\kappa E_t \sum_{j=0}^{\infty} \beta^j \tilde{u}_{t+j} + E_t \pi_{t+\infty} + \omega_t$$

(Same result with $\beta = 1$)

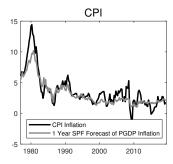
- Assume for simplicity that \tilde{u}_t follows an AR(1)
- This implies $E_t \tilde{u}_{t+j} = \rho_u^j \tilde{u}_t$

$$\pi_t = -\kappa E_t \sum_{j=0}^{\infty} \beta^j \tilde{u}_{t+j} + E_t \pi_{t+\infty} + \omega_t$$

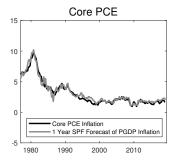
becomes

$$\pi_t = -\psi \tilde{u}_t + E_t \pi_{t+\infty} + \omega_t$$

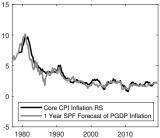
where $\psi = \kappa/(1 - \beta \rho_u)$.


$$\pi_t = -\psi \tilde{\boldsymbol{u}}_t + \boldsymbol{E}_t \pi_{t+\infty} + \omega_t$$


- Long-run inflation target major determinant of current inflation
 - Has a coefficient of one
 - Current inflation moves one-for-one with beliefs about long-run inflation target
- Inflation can vary without any variation in ũ_t
 - Purely due to changes in $E_t \pi_{t+\infty}$
- Correlation between *E*_tπ_{t+∞} and *ũ*_t potentially a source of severe omitted variables bias


- Sharp shift in monetary regime
 - Drop in inflation driven by expectations rapidly shifting downward
- But imperfectly credible (Erceg-Levin, 2003, Goodfriend-King, 2005)
 - Induces a recession
 - High unemployment correlated with fall in inflation
 - But not real cause
- Period since late 1990s:
 - Inflationary expectations firmly anchored
 - Collapse in covariance between expectations and unemployment
 - Phillips curve appears to flatten

$$\pi_t - \beta E_t \pi_{t+1} = -\kappa (u_t - u_t^n) + \nu_t$$


- Useful to look at difference between π_t and $E_t \pi_{t+1}$ in the data
- Measurement issue:
 - Before 1983, housing services constructed from house prices and mortgage costs (interest rates)
 - PCE deflator and CPI research series use modern methods back in time (i.e., rents)

- Inflation gap for core inflation is small throughout
- Suggests slope of Phillips curve is small
 - Large variation in unemployment
 - Small variation in inflation gap
- However, sensitive to specification Sensitivity
 - Measure of inflation
 - Measure of inflation expectations
 - Timing of variables
 - Etc.

A Model of the Regional Phillips Curve

- Two regions: Home and Foreign
- Tradeable and non-tradeable sector in each region
- No labor mobility between regions
- Perfect labor mobility between sectors within region
- Monetary union

Households:

- Consume and supply labor
- Nested CES demand over varieties of traded and non-traded goods
- GHH preferences

Firms:

- Linear production function in labor
- Calvo (1983) type price rigidity

Regional Phillips Curve for Non-Tradeables:

$$\pi_{Ht}^{N} = \beta E_{t} \pi_{H,t+1}^{N} - \kappa \hat{u}_{Ht} - \lambda \hat{p}_{Ht}^{N} + \nu_{Ht}^{N}$$

• Aggregate Phillips Curve:

$$\pi_t = \beta \boldsymbol{E}_t \pi_{t+1} - \kappa \hat{\boldsymbol{u}}_t + \nu_t$$

where $\hat{u}_{Ht} = -\hat{n}_{Ht}$ and $\hat{u}_t = -\hat{n}_t$

- Important result: Same slope κ
 - This is true for non-tradeable regional Phillips curve
 - Not for overall regional Phillips curve (traded goods priced nationally)
 - Relies on GHH preferences

Let's solve the regional Phillips curve forward:

$$\pi_{Ht}^{N} = -\kappa E_{t} \sum_{j=0}^{\infty} \beta^{j} \tilde{u}_{H,t+j} - \lambda E_{t} \sum_{j=0}^{\infty} \beta^{j} \hat{\rho}_{H,t+j}^{N} + E_{t} \pi_{t+\infty} + \omega_{Ht}^{N},$$

 Long-run inflation expectations are constant across regions and can be replaced with time fixed effects:

$$\pi_{Ht}^{N} = -\kappa E_t \sum_{j=0}^{\infty} \beta^j \tilde{u}_{H,t+j} - \lambda E_t \sum_{j=0}^{\infty} \beta^j \hat{p}_{H,t+j}^{N} + \gamma_t + \omega_{Ht}^{N},$$

Panel specification "differences out" long-run inflation expectations

Non-Rational Expectations

INTERPRETATION OF SLOPE COEFFICIENT

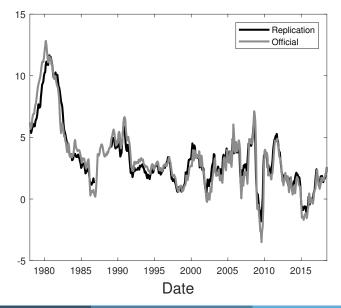
Regional Phillips curve:

$$\pi_{Ht}^{N} = -\kappa E_t \sum_{j=0}^{\infty} \beta^j \tilde{u}_{H,t+j} - \lambda E_t \sum_{j=0}^{\infty} \beta^j \hat{p}_{H,t+j}^{N} + \gamma_t + \omega_{Ht}^{N},$$

Suppose we assume that *ũ_{Ht}* and *p̂^N_{Ht}* follow AR(1) processes:

$$\pi_{Ht}^{N} = -\psi \tilde{u}_{Ht} - \delta \hat{p}_{Ht}^{N} + \gamma_{t} + \omega_{Ht}^{N}$$
where $\psi = \frac{\kappa}{1 - \beta \rho_{u}}$ and $\delta = \frac{\lambda}{1 - \beta \rho_{pN}}$

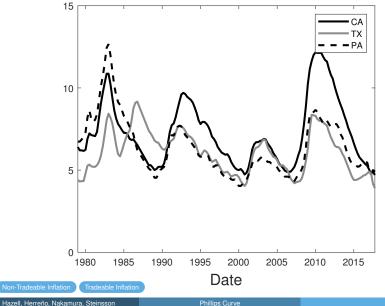
- Equation (1) similar to typical regional empirical specification
- But κ and ψ are not the same!
 - ψ potentially much larger than κ since \tilde{u}_{Ht} is persistent
 - Prior regional Phillips curve literature estimates ψ not κ .
 - Helps explain large slope estimates in this literature


(1)

New State-Level Inflation Indexes

STATE-LEVEL INFLATION INDEXES

- No existing state-level inflation indexes
 - BEA series reweight industry-series by state's industry composition
 - BLS city-level CPI series rely on regional and aggregate imputation
 - Scanner price data have a short sample period
- We construct state-level CPI series from BLS micro-data
 - Sample period 1978 2018, quarterly
 - Free of cross-state imputations
 - Separate indexes for tradeables vs. non-tradeables
 - Analyze housing separately (more on this later)


AGGREGATE NON-SHELTER CPI INFLATION

Hazell, Herreño, Nakamura, Steinsson

- Measure of slack: State unemployment rates
- Tradeable demand spillover instrument:
 - State-industry employment shares
 - 2-digit SIC for 1975-2000
 - 3-digit NAICS from 1990-2018

REGIONAL BUSINESS CYCLES

Regional Phillips curve from our model:

$$\pi_{it}^{N} = \alpha_{i} + \gamma_{t} - \kappa E_{t} \sum_{j=0}^{\infty} \beta^{j} u_{i,t+j} - \lambda E_{t} \sum_{j=0}^{\infty} \beta^{j} \hat{\rho}_{i,t+j}^{N} + \omega_{it}$$

• Reduced form equation similar to prior literature:

$$\pi_{it}^{N} = \alpha_{i} + \gamma_{t} - \psi u_{i,t-4} - \delta p_{i,t-4}^{N} + \varepsilon_{it}$$

• We present estimates of both κ and ψ

$$\pi_{it}^{N} = \alpha_{i} + \gamma_{t} - \kappa E_{t} \sum_{j=0}^{\infty} \beta^{j} u_{i,t+j} - \lambda E_{t} \sum_{j=0}^{\infty} \beta^{j} \hat{\rho}_{i,t+j}^{N} + \omega_{it}$$

 Replace expectations with realized values and expectation error and truncate the infinite sums:

$$\pi_{it}^{N} = \alpha_{i} + \gamma_{t} - \kappa \sum_{j=0}^{T} \beta^{j} u_{i,t+j} - \lambda \sum_{j=0}^{T} \beta^{j} \hat{p}_{i,t+j}^{N} + \omega_{it} + \eta_{it}$$

where η_{it} is an expectations error (and truncation error)

- We can now estimate κ using an IV regression (i.e., GMM)
- Calibrate $\beta = 0.99$

Two Approaches:

- 1. Use lagged unemployment and relative prices as instruments
 - Unemployment may reflect supply shocks
 - Time fixed effects capture national supply shocks
 - Identifying assumption: No relative change in restaurant technology in Texas vs. Illinois when Texas experiences a recession relative to Illinois
- 2. Tradeable demand instrument

Tradable Demand
$$_{i,t} = \sum_{x \in \mathcal{T}} ar{S}_{x,i} imes \Delta \log S_{-i,x,t}$$

- $\bar{S}_{x,i}$: Average employment share of industry x in state *i* over time
- $\log S_{-i,x,t}$: National employment share of industry x at time t
- Identifying assumption: supply shocks not simultaneously correlated with **both** shifts $\Delta \log S_{-i,x,t}$ and shares $\bar{S}_{x,i}$
- Intuition:
 - Oil boom increases labor demand and wages in Texas
 - "Demand shock" for Texan restaurants
 - Oil boom does not differentially affect production technology for restaurants in Texas

- Focus on non-tradeable inflation over four quarters,
 Divide κ estimate by 4 due to this time aggregation
- Truncate present sum of \tilde{u}_t at 20 quarters
- Split sample IV procedure to avoid dropping data
 - Estimate first stage on sample ending in 2013
 - Estimate second stage on sample ending in 2018 (Chodorow-Reich & Wieland 2020)

$$\pi_{it}^{N} = \alpha_{i} + \gamma_{t} - \psi u_{i,t-4} - \delta p_{i,t-4}^{N} + \varepsilon_{it}$$

Same two approaches:

OLS

Instrument for u_{i,t-4} with tradeable demand instrument

TABLE: Full Sample

	No State Effects	No Time Effects	Lagged u IV	Tradeable Demand IV
	(1)	(2)	(3)	(4)
ψ	-0.103	0.017		
	(0.036)	(0.027)		
κ	-0.0037	0.0003		
	(0.0013)	(0.0019)		
State Effects		\checkmark	\checkmark	\checkmark
Time Effects			\checkmark	\checkmark

TABLE: Full Sample

	No State Effects	No Time Effects	Lagged u IV	Tradeable Demand IV
	(1)	(2)	(3)	(4)
ψ	-0.103 (0.036)	0.017 (0.027)	0.112 (0.057)	
κ	-0.0037	0.0003	0.0062	
	(0.0013)	(0.0019)	(0.0028)	
State Effects		\checkmark	\checkmark	\checkmark
Time Effects			\checkmark	\checkmark

TABLE: Full Sample

	No State Effects	No Time Effects	Lagged u IV	Tradeable Demand IV
	(1)	(2)	(3)	(4)
ψ	-0.103	0.017	0.112	0.339
	(0.036)	(0.027)	(0.057)	(0.126)
κ	-0.0037	0.0003	0.0062	0.0062
	(0.0013)	(0.0019)	(0.0028)	(0.0025)
State Effects		\checkmark	√	√
Time Effects			\checkmark	\checkmark

	Lagged u IV		Lagge	Lagged u IV		Tradeable Demand IV	
	No Time F	ixed Effects	Time Fixed Effects		Time Fixed Effects		
	Pre-1990	Post-1990	Pre-1990	Post-1990	Pre-1990	Post-1990	
	(1)	(2)	(3)	(4)	(5)	(6)	
ψ	0.449	0.009					
	(0.063)	(0.025)					
κ	0.0278	0.0002					
	(0.0025)	(0.0017)					

All specifications include state fixed effects

	Lagged u IV		Lagged u IV		Tradeable Demand IV	
	No Time Fixed Effects		Time Fixed Effects		Time Fixed Effects	
	Pre-1990	Post-1990	Pre-1990	Post-1990	Pre-1990	Post-1990
	(1)	(2)	(3)	(4)	(5)	(6)
ψ κ	0.449 (0.063) 0.0278 (0.0025)	0.009 (0.025) 0.0002 (0.0017)	0.198 (0.113) 0.0107 (0.0080)	0.090 (0.057) 0.0050 (0.0038)		

All specifications include state fixed effects

	Lagged u IV		Lagged u IV		Tradeable Demand IV	
	No Time Fixed Effects		Time Fixed Effects		Time Fixed Effects	
	Pre-1990	Post-1990	Pre-1990	Post-1990	Pre-1990	Post-1990
	(1)	(2)	(3)	(4)	(5)	(6)
ψ κ	0.449 (0.063) 0.0278 (0.0025)	0.009 (0.025) 0.0002 (0.0017)	0.198 (0.113) 0.0107 (0.0080)	0.090 (0.057) 0.0050 (0.0038)	0.422 (0.232) 0.0109 (0.0048)	0.332 (0.157) 0.0055 (0.0029)

All specifications include state fixed effects

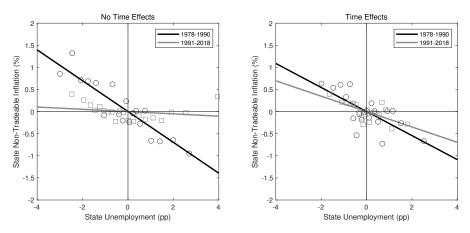


FIGURE: Scatterplots—Non-Tradeable Inflation and Unemployment

- Slope of Phillips curve small
 - κ = 0.0062 implies that even a 5 percentage point increase in unemployment decreases inflation by only 2 percentage points (if inflation expectations remain unchanged)
- Apparent "flattening" mainly due to anchoring of expectations
 - No time fixed effects: Factor >100 flattening
 - With time fixed effects: Factor 2 flattening
 - Interpretation: Time fixed effects absorb movements in long-run inflation expectations

TABLE: Our Estimates Compared to Prior Work

	κ
Gali (2008)	0.085
Rotemberg and Woodford (1997)	0.019
Nakamura and Steinsson (2014)	0.0077
Our Estimate	
Full Sample IV Estimate	0.0062

Note: We adjust prior estimates by the elasticity of output with respect to employment in the model in these papers. For Nakamura and Steinsson (2014), we use the calibration with GHH preferences.

- Can our cross-section estimate of κ explain aggregate time-series fluctuations in inflation?
- Many have argued:
 - Missing disinflation during Great Recession
 - Missing reinflation during late 2010s and late 1990s
- Are cross-sectional estimates of Phillips curve steeper than time-series estimates?

Plot RHS and LHS of

$$\pi_t - \mathbf{E}_t \pi_{t+\infty} = -\kappa \zeta \tilde{\mathbf{u}}_t + \omega_t$$

assuming no supply shocks $\omega_t = 0$

• Scaling factor: $\zeta = 6.16$ (s.e. 1.80)

$$\sum_{j=0}^{T} \beta^{j} \tilde{u}_{t+j} = \zeta \tilde{u}_{t} + \alpha + \epsilon_{t}.$$

- Aggregate includes housing
 - Estimate aggregate Phillips curve for shelter
 - Data from American Community Survey for 2001-2017
 - $\kappa = 0.0243$ (s.e. 0.0053) Table
 - About four time larger than for non-shelter

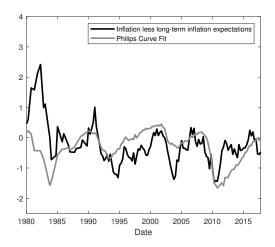


FIGURE: Aggregate Phillips Curve and Housing: Predicted vs. Fit

Results Excluding Rent Fit by Sub-Sample

- Post-1990: Predictions fit data reasonably well
 - · Essentially no missing disinflation or missing reinflation
- Pre-1990: Data deviates substantially from predictions
 - Actual inflation gap much higher than predicted
 - Natural Explanation: Adverse supply shocks
- Opposite of conventional wisdom

- Key determinant of inflation: $E_t \pi_{t+\infty}$
- But how does the monetary authority change $E_t \pi_{t+\infty}$
 - Fundamentally hard!!
 - How does it convince people that what it says is credible?
 - Answering this is not a strong suit of economists (need more research)
- Sometimes beliefs do change rapidly

(e.g., Volcker disinflation, ends of hyperinflations)

- Volcker tightened policy dramatically
 - Caused massive recession
 - Didn't get fired
- Perhaps this was crucial in changing beliefs about long-run monetary regime
- Fundamentally different from view that inflation fell due to steep Phillips curve

- Slope of the Phillips curve is small and has been small since 1978
- Apparent flattening in time series due to anchoring of expectations
 - No time fixed effects: Factor 100 flattening
 - With time fixed effects: Factor 2 flattening
- Volcker disinflation:
 - Mostly due to fall in long-run expectations
 - Only 2 percentage points due directly to high unemployment

Appendix

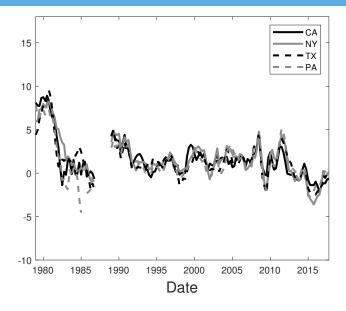
If expectations are non-rational but obey the law of iterated expectations:

$$\pi_{Ht}^{N} = -\psi \tilde{u}_{Ht} + F_t \pi_{H,t+\infty}^{N}$$

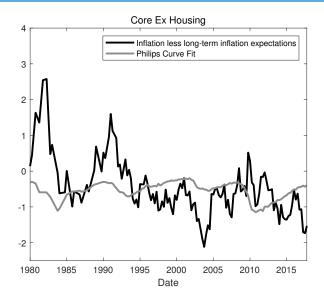
with

$$\psi = \frac{\kappa}{1 - \rho_u^F \beta}$$

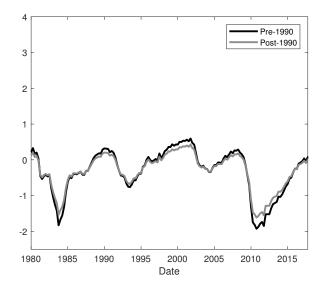
- *ρ^F_u* is subjective belief of unemployment AR(1) coefficient
- $F_t \pi^N_{H,t+\infty}$ is subjective forecast of inflation target
- If ρ^F_u < ρ_u, Phillips curve is less forward looking (Coibion-Gorodnichenko 2012, 2015)



NON-TRADEABLE INFLATION BY STATE



Back


TRADEABLE INFLATION BY STATE

PHILLIPS CURVE FIT EXCLUDING RENT

PHILLIPS CURVE FIT EXCLUDING RENT

	No Fixed Effects	No Time Effects	Baseline
	(1)	(2)	(3)
ψ	0.268	0.356	0.603
	(0.041)	(0.044)	(0.124)
κ	0.0074	0.0179	0.0243
	(0.0006)	(0.0014)	(0.0053)
State Effects		\checkmark	√
Time Effects			\checkmark

TABLE: Slope of the Regional Phillips Curve: Rents

Back

	Pre-1990	Post-1990
	(1)	(2)
Core CPI	0.796	0.111
	(0.120)	(0.027)
Median CPI	0.386	0.250
	(0.136)	(0.032)
Shelter CPI	1.624	0.396
	(0.350)	(0.050)
PCE	0.416	0.034
	(0.078)	(0.021)
Core less Shelter CPI	0.221	-0.084
	(0.103)	(0.028)
Core CPI RS	0.182	0.150
	(0.108)	(0.028)

TABLE: Slope of the Aggregate Phillips Curve

TABLE: Estimates of λ

	No State Effects	No Time Effects	OLS	Tradeable Demand IV
	(1)	(2)	(3)	(4)
λ	0.0010 (0.0001)	0.0022 (0.0002)	0.0029 (0.0009)	0.0020 (0.0007)
State Effects Time Effects		\checkmark	\checkmark	\checkmark

Return

	Pre	Present Value of Unemployment				
Lagged	7.029	3.661	5.477			
Unemployment	(0.635)	(0.474)	(0.510)			
Lagged Trade-				-4.465		
able Demand				(0.594)		
Lagged Relative	0.181	-0.178	0.259	0.833		
Price	(0.160)	(0.202)	(0.565)	(0.516)		
State Effects		\checkmark	\checkmark	\checkmark		
Time Effects			\checkmark	\checkmark		

Return

	eta= 0.99	eta= 0.95	eta= 0.90
κ	0.0062	0.0084	0.0116
	(0.0025)	(0.0033)	(0.0046)
State Effects	\checkmark	\checkmark	\checkmark
Time Effects	\checkmark	\checkmark	\checkmark

TABLE: Estimate of κ as Calibrated Value of β Varies

Return