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Motivation

Two main sources of systemic risk:

1 correlations in exposures outside the financial system

2 counter-party risk

Interaction between sources could be important.



Motivation

For example,

I correlations in non-financial exposures could create
simultaneous losses,

I and then financial linkages could propagate failures.

Policy makers concerned about correlated risks

I e.g., Basel III.

I but tend to treat interbank and real economy risks as
independent (Bandt et al., 2012).



Portfolio and counterparty choices

Standard view: Diversification motives mean
counterparties with less correlated portfolios are
preferred.

For example, Allen and Gale (2000).



But, in practice...

Those most exposed to sub-prime mortgages traded
extensively with each other.

“Among U.S. bank holding companies, of the notional
amount of OTC derivatives, millions of contracts, were
traded by just five large institutions (JPMorgan Chase,
Citigroup, Bank of America, Wachovia, and
HSBC)—many of the same firms that would find
themselves in trouble during the financial crisis.”

—Financial Crisis Inquiry Commission (2011)



Some anecdotes

Merrill and ACA:

Merrill was heavily exposed to the subprime crisis.

Hedged exposure with CDS contracts with monoline
insurer ACA.

ACA was also long the housing market.

ACA was downgraded by S&P to junk status.

Merrill taken over by BoA.

Similar patterns at:

(i) Bear Sterns and Carlyle Capital Group.

(ii) Wachovia and Lehman.



This talk

Is there any systematic evidence for banks having
counterparties with relatively similar non-financial
exposures?

If so, is this bad?

And how could it be explained?



Preview: Systematic evidence

Would like a setting in which:

1 Financial institutions’ interdependencies are large
and observable (on-book).

2 Financial institutions’ main non-financial exposures
are large and observable (on-book).



German commercial banking

German commercial banking perfectly fits the bill:

1 Substantial, long-term, interbank loans reported to
the Bundesbank that generates systemic risk.

I Upper and Worms (2004).

2 Substantial loans to firms reported to the
Bundesbank.



Empirical question

Do commercial German banks lend more to each other
when they have more similar non-bank loan portfolios?

In other words, is there homophily in this network?
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Evidence of homophily
We find a substantial, robust and statistically significant
positive relationship.
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Figure: Binned scatterplot of residuals of dependent vs. main independent
variable.



Evidence of homophily

In our data, when two banks move from the 25th to the
75th percentile of non-financial portfolio similarity, their
net lending to one another grows by roughly 26%.



Preview: Theory

Planner would choose uncorrelated underlying
exposures and networks with firebreaks.

But these outcomes are not stable.

Banks have profitable deviations to make their
shocks correlated with their counterparties, to
risk-shift.
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1 Stylized Fact: Homophily in Financial Networks

2 Parsimonious Theoretical Model

3 Social Planner’s Solution
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Implementation

German banking system.
I 2006/Q1 to 2014/Q4.

Financial connections: Interbank lending.
I Over-the-counter market of secured and unsecured loans

generates an Interbank network.

I In Germany, about 25-30% of total balance sheet size.

I Average loan is long-term (maturity > 1 year).

I Network has a core-periphery structure.

Exposures: Loans to businesses.



Data

Quarterly data from the German large credit
registry.

I All commercial loans

I Collected under the German Banking Act.

Matched with monthly balance sheet statistics
(BISTA).

I Reported to Bundesbank by all financial institutions
located in Germany.



Computing loan book similarity
Standard Euclidean measure:

Construct a vector space V of investments
(|V | = N).

Bank i’s investment in quarter t is a vector vi,t

Construct distance measure between the portfolios:

Distij,t =

√√√√ N∑
k=1

(vi,k − vj,k)2

Similarity between banks is high if distance is low.



Empirical setup
Empirical setup: Simple panel estimation

Dependent variable: log of normalized amount of
interbank lending from bank i to bank j in quarter t:

log(NormAmountij,t) = βi,T + βj,T + βij + βt
+γ log(Distij,t) + εij,t.

But don’t care if interbank lending instead causes
portfolio changes.

Standard errors are clustered on borrower, lender,
and time level.

Variation is on the intensive margin.



Results

log(NormAmountij,t) (1a) (1b) (2a) (2b) (3a) (3b)

log(NormDistij) −1.304∗∗∗ −2.893∗∗∗ −0.599
(0.348) (0.678) (0.393)

log(Distij) −0.608∗∗∗ −0.892∗∗∗ −0.121∗∗
(0.07) (0.09) (0.05)

Fixed Effects

Time Y es Y es Y es Y es Y es Y es
Lender + Borrower Y es Y es − − − −

Time-varying
Lender + Borrower No No Y es Y es Y es Y es

Borrower-Lender No No No No Y es Y es

N 33, 885 33, 885 33, 745 33, 745 33, 048 33, 048
R2 0.407 0.423 0.464 0.487 0.660 0.660

Robustness checks: Extensive margin variation, time varying bank
controls, sectorial similarity, Amount instead of Norm Amount.



But...

Is this correlation necessarily bad?

What would a social planner choose?

If it is inefficient, why might banks choose it?

Theory needed to think systematically about them.
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Hedging

Banks: N = {1, . . . , n};

Each bank has an idiosyncratic project, stochastic
return pi;

Hedge exposures by writing risk-sharing contracts.

Aij ∈ [0, 1]: i’s proportional claim on j’s project

Matrix of dependencies A, non-negative and column
stochastic.

Bank values: vi =
∑

j Aijpj (v = Ap)
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Outside liabilities

Liabilities to (external) creditors v for all banks.

If vi ≥ v then:
I Outside debt holders paid in full.

I Equity holders get vi − v.

If vi < v then:
I Outside debt holders force bankruptcy, get vi.

I Equity holders get 0.
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Bankruptcy costs

Bankruptcy costs β ≤ minj pj.

Let
bi(vi) = βIvi<v,

Ivi<v is an indicator function.

Subtracts from proprietary asset returns:

bank value: v = A(p− b(v))

equity value: π = max{v − v,0}
debt value: δ = min{v,v}

So: v = π + δ
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Payment equilibrium

There is always a payment equilibrium, i.e. a vector
of consistent market values v.

Set of payment equilibria has a lattice structure.

I Equilibria partially ordered by which set of banks fail.

I Focus on the case where the minimum set of banks fail.



Shocks

Rare project-specific shocks (probability r).

Shocks can be large or small

ε =

{
εL > n(R− v) w.p. rq

εS ∈
(
R− v, n(R− v)

)
w.p. r(1− q).

Large shocks are
I much rarer (q < 1/n2), and

I hit in isolation.

Small shocks can be arbitrarily correlated.



Small shock correlations

When a small shocks hits:

Any subset of banks can be hit simultaneously.

States of the world—power set of all banks.

Probability distribution over these states such that:

I Marginal probability each bank is hit is 1/n.



Example with 2 banks

Three possible probability distributions over shocks:

States of the World

No Shock Small Shock Large Shock
e.g. No Bank Bank 1 Bank 2 Banks 1, 2 Bank 1 Bank 2

(a) 1− r 0 r(1−q)
2

r(1−q)
2 0 rq

2
rq
2

(b) 1− r r(1−q)
4

r(1−q)
4

r(1−q)
4

r(1−q)
4

rq
2

rq
2

(c) 1− r 2r(1−q)
2 0 0 r(1−q)

2
rq
2

rq
2



Separate shocks

Definition
Shocks are separate if the probability small shocks hit
more than 1 bank at once is 0.

e.g. (a) had separate shocks.
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Autarky outcomes

Autarky: Claims are the identity network I.

vi(I) = R− (r/n) (qεL + (1− q)εS + β)

We constrain our social planner in two ways

Knows the probability distribution of returns but not
the realization.

Must respect individual rationality constraints:

vi(A) ≥ vi(I) for all i



Planner’s problem
Choose

1 a feasible, individually rational network A; and

2 a joint shock distribution φ,

to maximize expected equity value plus expected debt
value:

E

[∑
i∈N

(πi(A) + δi(A))

]

Equivalent to minimising the expected number of
failures.
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Integer assumptions

Define d∗ to be the unique positive root of

d2i (R− v)β + di ((R− v)(εL − εS)− εSβ)

+εS (n(R− v)− εL) = 0.

We abstract from the integer problems by assuming:

(i) d∗ is an integer; and

(ii) n/d∗ is an integer.



d∗-clusters

Can partition the banks into n/d∗ groups of d∗ banks.

Definition
The class of networks A∗(d∗) are d∗-clustered, where:

A∗(d∗) :=

A ∈ A :

|Gi| = d∗ ∀i ∈ N

A∗ji = R−v
εS

∀i, j : Gi = Gj

A∗ji = R−v
εL+βd∗

∀i, j : Gi 6= Gj

 ,

and Gi is the group that i belongs to.



Example



Socially optimal networks

Proposition
Under the maintained assumptions as r → 0 a network
shock distribution pair (A, φ) solve the social planner’s
problem if and only if A ∈ A∗(d∗) and there are separate
shocks.

We then have that:

No banks fail after a small shock.

Failures after a large shock are contained within a
cluster.

Weak links between clusters act as firebreaks.
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Proof strategy

Suppose planner knows which bank will be hit by
the large shock, if it occurs.

Find a lower bound on the number of failures the
planner can achieve.

Also a lower bound when the large shock can hit
any bank.

Show this lower bound can be achieve by all
d∗-clustered network with separate shocks.

Show no other network-shock distribution pair can
achieve it.



Proof outline

Two observations simplify the problem.

(i) As r → 0, the individual rationality constraints
imply that the social planner must choose a row
stochastic network A.

(ii) As large shocks are rare relative to small shocks, the
planner never chooses a network–shock distribution
pair in which:

I a bank holds assets that result in at least one failure
whenever the small shock hits it.



Proof outline

The second observation implies that AijεS ≤ R− v
for all i, j.

The first observation implies that vi = R for all i
when no shock hits.

Let Di be the set of banks that fail following a large
shock to i.

For all j 6∈ Di, AjiεL +
∑

k∈Di
Ajkβ ≤ R− v



Proof outline

Combining these inequalities it can be shown that:

Lemma

For all doubly stochastic network structures A such that
there is no bank that holds assets which always result in
at least one failure when the small shock hits it,
|Di| ≥ dd∗e where d∗ is the unqiue positive root of

d2i (R− v)β + di ((R− v)(εL − εS)− εSβ)

+εS (n(R− v)− εL) = 0.



Proof outline
d∗qr is a lower bound on the expected number of failures
a planner must incur . . .

even when they know which bank a large shock hits.

However, all networks A ∈ A∗(d∗) with separate shocks
achieve

exactly d∗ failures following a large shock to any
bank, and

no failures following a small shock to any bank.

All networks A ∈ A∗(d∗), with separate shocks solve the
planners problem.
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Proof outline

Achieving d∗ failures requires several inequalities to bind.

All these inequalities binding implies the network is
d∗-clustered and there are separate shocks.

So only d∗-clustered networks with separate shocks can
be socially optimal.



Efficient modularity
Al’Qaeda ... operates not as a centralised, integrated organisation
but rather as a highly decentralised and loose network of small
terrorist cells. ... As events have shown, Al’Qaeda has exhibited
considerable systemic resilience in the face of repeated and on-going
attempts to bring about its collapse.

These two characteristics are closely connected. A series of
decentralised cells, loosely bonded, make infiltration of the entire
Al’Qaeda network extremely unlikely. If any one cell is incapacitated,
the likelihood of this undermining the operations of other cells is
severely reduced. That, of course, is precisely why Al’Qaeda has
chosen this organisational form. Al’Qaeda is a prime example of
modularity and its effects in strengthening systemic resilience.

banking ... has many of the same basic ingredients.

—Haldane (2010)



Other shock sizes

Any

45°
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Acemoglu et al (2015): One shock size (follows the 45
degree line).



Debt and equity holders

Planner maximizes sum of equity and debt value, but. . .

Corollary
Suppose there are separate shocks and consider the class
of networks A′ whereby no bank fails under a small
shock. Abstracting from integer problems, the socially
efficient networks A∗ ⊂ A′ have the following properties:

1 Any A∗ ∈ A′ minimises the sum of expected
payments to shareholders

2 Any A∗ ∈ A′ maximises the sum of expected
payments to external creditors
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Portfolio and counter-party choices

Banks maximize expected equity value E[πi] by
choosing:

(i) their financial connections; and

(i) how correlated the shocks they face are with others’
shocks.
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Some notation

Denote the possible states of the world by:

Ω = No Shock ∪ 2N︸︷︷︸
Possible Small Shocks

∪ N︸︷︷︸
Possible Large Shocks

Let φ(ω) be the probability of state ω ∈ Ω.



Choosing the correlation structure

Definition
A probability distribution φ′ is implementable by bank i
from a probability distribution φ if and only if:

(i) bank i only changes when it’s small shock hits, and
not when others’ shocks hit; and

(ii) the overall probability that bank i is hit by a small
shock does not change.



Choosing the correlation structure—math

Definition
A probability distribution φ′ is implementable by bank i
from a probability distribution φ if and only if:

(i) φ′(S) + φ′(S ∪ {i}) = φ(S) + φ(S ∪ {i}),
for all S ⊆ N \ {i}; and

(ii)
∑

S∈2N :i∈S φ
′(S) =

∑
S∈2N :i∈S φ(S).



Portfolio and counter-party choices

Proposition
For any socially efficient network structure-shock
distribution pair, for each bank i there exist
implementable probability distributions that:

(i) strictly increases i’s equity value,

(ii) weakly increases the correlation of i’s shock with all
other banks; and

(iii) strictly increases the correlation of i shock with at
least one other banks.



Intuition

Remark

Bank i’s equity value can be rewritten as

E[πi] = P (vi ≥ v)︸ ︷︷ ︸
Pr. no failure

∑
j∈N

Aij

 E [pj|vi ≥ v]︸ ︷︷ ︸
Conditional value of claims


−
∑
j∈N

Aij

 βP (vj < v)︸ ︷︷ ︸
Unconditional bankruptcy losses

− v︸︷︷︸
Obligations



+ β
∑
j∈N

AijCov
[
Ivj<v, Ivi<v

]
︸ ︷︷ ︸

Bankruptcy losses passed onto debt holders
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Intuition

Correlating failures with counter-parties shifts risk.

If i and j correlate shocks to fail at the same time:

1 Debt holders suffer higher losses.

2 Equity holders are not affected—limited liability.

And the probability of no shock increases, so equity
values increase.



Network deviations

Starting from an efficient network, similar forces can
make switching counter-parties profitable too.

But there is now a countervailing force.

The trade might induce your counter-party to fail in
new states when you do not.

And this reduces your equity value.

There is a profitable deviation if and only if
bankruptcy costs are below a key threshold.
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Conclusions

Anecdotal evidence suggests homophily might have
played a role in the financial crisis.

It is present for German commercial banks.

In a parsimonious model, this is not what a planner
would choose.

Risk-shifting pushes banks towards homophilous
networks.
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